DIVISION OF POLYNOMIALS AND THE REMAINDER THEOREM

If $P(x) = 3x^2 + 7x + 4$, then P(1) is the value of P(x) when x = 1, which is found by substituting x = 1 into the polynomial. For example:

$$P(1) = 3 + 7 + 4 = 14$$

$$P(-1) = 3 \times (-1)^{2} + 7 \times (-1) + 4 = 0$$

$$P(a) = 3a^{2} + 7a + 4$$

You already know how to perform long division using integers (e.g. $532 \div 19 = 28$). You can also perform long division of a polynomial by a linear expression or by another polynomial. For example:

4x + 12

4x + 12

0

$$\frac{x^2 + 7x + 12}{x + 3}, x \neq -3$$
$$(x^2 + 7x + 12) \div (x + 3), x \neq -3$$

The two ways of writing the division above are equivalent.

Example 3

Find
$$\frac{x^2 + 7x + 12}{x + 3}$$
, $x \neq -3$.

Solution

The condition $x \neq -3$ exists because it cannot be divided by zero.

Divide the leading term of the dividend (x^2) by the leading term of the divisor (x) and write the answer (x) above the x^2 .

Multiply the divisor (x + 3) by the result of $x^2 \div x$ (i.e. x) to obtain $x^2 + 3x$.

Subtract $(x^2 + 3x)$ from $(x^2 + 7x)$ to get 4x, then bring down the +12 from above.

Divide this new leading term (4x) by x and write the answer (+4) above 7x.

Multiply (x + 3) by 4 to obtain 4x + 12.

Subtract the last two lines to get a remainder of 0, completing the division.

Hence you have $\frac{x^2 + 7x + 12}{x + 3} = x + 4$, with no remainder.

You could also write $x^2 + 7x + 4 = (x + 3)(x + 4) + 0$:

 $Dividend = Divisor \times Quotient + Remainder$

Find
$$\frac{x^2 + 7x + 12}{x + 3}$$
, $x \ne -3$

DIVISION OF POLYNOMIALS AND THE REMAINDER THEOREM

Example 4

If $P(x) = 3x^3 - 7x^2 + 2x + 4$, divide P(x) by x - 3.

Solution

Divide $3x^3$ by x and write the answer $(3x^2)$ above the $3x^3$.

Multiply (x-3) by $3x^2$ to obtain $3x^3 - 9x^2$ and write it under $3x^3 - 7x^2$.

 $3x^{2} + 2x + 8$ $x-3 \overline{\smash)3x^{3} - 7x^{2} + 2x + 4}$ $\underline{3x^{3} - 9x^{2}}$ Subtract $(3x^3 - 9x^2)$ from $(3x^3 - 7x^2)$ to get $2x^2$, then bring down the +2x from above.

Divide $(2x^2 + 2x)$ by x and write the answer (+2x) above $-7x^2$.

Multiply (x-3) by 2x to obtain $2x^2-6x$ and write it under $2x^2+2x$.

Subtract $(2x^2 - 6x)$ from $(2x^2 + 2x)$ to get 8x, then bring down the +4 from above.

Divide 8x by x and write the answer (+8) above +2x.

Multiply (x - 3) by 8 to obtain 8x - 24 and write it under 8x + 4.

Subtract (8x - 24) from (8x + 4) to get 28.

 $2x^2 - 6x$ 8x + 4

8x - 24

28

The number 28 is a constant with a degree less than the divisor, so it is not divisible by (x - 3). Thus the remainder is 28.

Hence: $\frac{3x^3 - 7x^2 + 2x + 4}{x - 3} = 3x^2 + 2x + 8 + \frac{28}{x - 3}$

or $3x^3 - 7x^2 + 2x + 4 = (x - 3)(3x^2 + 2x + 8) + 28$

i.e. P(x) = (x-3)Q(x) + R

where Q(x) is the quotient and R is the remainder (i.e. in this case, 28). *Note:*

The degree of the remainder < the degree of the divisor.

The degree of the quotient < the degree of the dividend.

When the divisor is a linear function (first degree), the remainder will be a constant.

Note also that $P(x) = (x-3)(3x^2 + 2x + 8) + 28$, so:

$$P(3) = (3-3) \times Q(3) + 28 = 0 + 28 = 28$$

This suggests that the remainder of division by (x - 3) could be found just by finding the value of P(3), without doing the long division.

Example 5

Divide $4x^3 - 19x + 9$ by 2x - 3.

-10x + 15

Solution

When writing out the dividend, include all missing terms by writing them with zero coefficients.

The quotient is $2x^2 + 3x - 5$ and the remainder is -6.

 $2x^{2} + 3x - 5$ $2x - 3 \overline{\smash{\big)}\ 4x^{3} + 0x^{2} - 19x + 9}$ $\underline{4x^{3} - 6x^{2}}$ $\frac{4x^3 - 19x + 9}{2x - 3} = 2x^2 + 3x - 5 - \frac{6}{2x - 3}$ or $(4x^3 - 19x + 9) = (2x - 3)(2x^2 + 3x - 5) - 6$ $P(x) = (2x - 3) \times Q(x) - 6$

If 2x - 3 = 0 then $x = \frac{3}{2}$. $6x^2 - 9x$ $P\left(\frac{3}{2}\right) = 0 \times Q\left(\frac{3}{2}\right) - 6 = -6$

This again suggests a simpler method for finding the remainder.

DIVISION OF POLYNOMIALS AND THE REMAINDER THEOREM

Example 6

Divide $x^4 + x^3 - 7x^2 - x + 6$ by $x^2 - 1$.

Solution

$$\begin{array}{r}
 x^{2} + x - 6 \\
 x^{2} - 1 \overline{\smash)x^{4} + x^{3} - 7x^{2} - x + 6} \\
 \underline{x^{4} - x^{2}} \\
 \underline{x^{3} - 6x^{2} - x} \\
 \underline{x^{3} - 6x^{2} + 6} \\
 \underline{-6x^{2} + 6}
 \end{array}$$

The remainder is zero, so this means that $(x^2 - 1)$ is a factor of $x^4 + x^3 - 7x^2 - x + 6$. This then means that (x + 1) and (x - 1) are also factors of $x^4 + x^3 - 7x^2 - x + 6$.

The remainder theorem

If a polynomial P(x) is divided by (x - a) until the remainder R does not contain x, then R = P(a).

For any polynomial, P(x) = (x - a)Q(x) + R, where Q(x) is a polynomial.

Thus
$$P(a) = (a - a)Q(a) + R$$

i.e.
$$P(a) = 0 \times Q(a) + R$$

$$\therefore$$
 $R = P(a)$

Important considerations:

1 If
$$P(x)$$
 is divided by $x + a$, as $x + a = x - (-a)$, then $R = P(-a)$.

2 If
$$P(x)$$
 is divided by $ax - b$, as $ax - b = a\left(x - \frac{b}{a}\right)$, then $R = P\left(\frac{b}{a}\right)$.

Example 7

Find the remainder when $P(x) = 2x^3 - 6x^2 + 4x + 3$ is divided by the following.

(a)
$$x-2$$

(b)
$$x+3$$

(c)
$$2x - 1$$

(a)
$$x-2$$
 (b) $x+3$ (c) $2x-1$ (d) $3x+2$

Solution

(a)
$$R = P(2) = 2 \times 2^3 - 6 \times 2^2 + 4 \times 2 + 3 = 16 - 24 + 8 + 3 = 3$$

(b)
$$R = P(-3) = 2 \times (-3)^3 - 6 \times (-3)^2 + 4 \times (-3) + 3 = -54 - 54 - 12 + 3 = -117$$

(c)
$$R = P\left(\frac{1}{2}\right) = 2 \times \left(\frac{1}{2}\right)^3 - 6 \times \left(\frac{1}{2}\right)^2 + 4 \times \frac{1}{2} + 3 = \frac{1}{4} - \frac{3}{2} + 2 + 3 = 3\frac{3}{4}$$

(d)
$$R = P\left(-\frac{2}{3}\right) = 2 \times \left(-\frac{2}{3}\right)^3 - 6 \times \left(-\frac{2}{3}\right)^2 + 4 \times \left(-\frac{2}{3}\right) + 3 = -\frac{16}{27} - \frac{8}{3} - \frac{8}{3} + 3 = -\frac{79}{27}$$