For questions 1 to 14, find the Cartesian equation of the curves with the parametric equations given.

1
$$x = 2t, y = t + 2$$

2
$$x = t, y = t$$

2
$$x = t, y = t^2$$
 3 $x = t, y = \frac{1}{t}$

4
$$x = 2\cos\theta$$
, $y = 2\sin\theta$, $0 \le \theta \le 2\pi$

5
$$x = 2\cos\theta$$
, $y = 2\sin\theta$, $0 \le \theta \le \pi$

6
$$x = t + 3, y = t^2 - 5, t \ge 0$$

5
$$x = 2\cos\theta$$
, $y = 2\sin\theta$, $0 \le \theta \le \pi$ **6** $x = t + 3$, $y = t^2 - 5$, $t \ge 0$ **7** $x = 2u - 2$, $y = 3u + 1$, $1 \le u \le 3$

8 $x = v^3$, $y = 1 - v^2$, $-1 \le v \le 1$ 9 x = t + 2, $y = t^2 - 1$ 10 $x = \cos t$, $y = \cos t$, $0 \le t \le 2\pi$ 11 $x = 2t^2$, y = 4t

12
$$x = 2\cos\theta, y = \sqrt{3}\sin\theta, 0 \le \theta \le 2\pi$$
 13 $x = 2\cos t, y = \sin t, 0 \le t \le \pi$

13
$$x = 2\cos t, y = \sin t, 0 \le t \le \pi$$

14
$$x = \frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2}$$

- 15 Two boats on a lake start sailing at the same time. Boat A moves on a course given by $x = \frac{t}{2}$, y = t + 1, while boat B moves on a course given by x = t - 2, y = -2t + 9, where t is the time elapsed in hours.
 - (a) Find the Cartesian equation for the course of each boat. Show that the courses intersect at the point (1,3).
 - (b) Do the boats collide? Justify your answer.

- 18 Sketch the graph of each curve from its parametric equations.

- (a) x = t + 1, y = 2t 1 (b) $x = t, y = 2t^2$ (c) $x = \frac{t}{2}, y = t^2$ (d) $x = 4\sin\theta, y = 4\cos\theta$ (e) $x = \frac{\sin\theta}{2}, y = \frac{\cos\theta}{2}$