TRANSFORMATIONS OF GRAPHS USING y = f(ax) AND y = f(a(x + b))

Consider the following graphs.

If $y = x^2$ is written as y = f(x) then $y = (2x)^2$ becomes y = f(2x) and $y = (2(x+1))^2$ becomes y = f(2(x+1)). In y = f(2x) the curve for y = f(x) has stretched by a factor of $\frac{1}{2}$ unit from the y-axis.

In y = f(2(x+1)) the curve for y = f(x) has been moved 1 unit to the left and then been stretched by a factor of $\frac{1}{2}$ unit from the y-axis.

Summary – Transformations of graphs

Given y = f(x), then:

- y = f(x) + c translates the curve c units up
- y = f(x + b) translates the curve b units to the left
- y = kf(x + b) stretches (dilates) the curve by a factor of k from the x-axis
- y = f(a(x + b)) stretches (dilates) the curve by a factor $\frac{1}{a}$ from the y-axis.

TRANSFORMATIONS OF GRAPHS USING y = f(ax) AND y = f(a(x + b))

Example 2

- (a) On successive diagrams, draw the graphs of $f(x) = x^2$, g(x) = 3f(x) and y = g(x) + 5.
- **(b)** On successive diagrams, draw the graphs of $f(x) = x^2$, g(x) = f(x) + 5 and y = 3g(x).
- (c) Discuss the differences between your final graphs in parts (a) and (b).

The order in which a series of transformations is applied to a function is important.

Reversing or changing the order can change the final function.