AREA BETWEEN TWO CURVES

Area between two curves—general result

If f and g are two continuous functions whose graphs do not intersect in the interval $a \le x \le b$, and f(x) > g(x) over this interval, then the area of the region bounded by the two curves and the ordinates x = a and x = b is given by:

Area =
$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$
$$= \int_{a}^{b} (f(x) - g(x))dx$$

Example 15

Sketch the region bounded by the curves $y = 4 - x^2$ and $y = x^2 - 4$. By evaluating the appropriate definite integrals, calculate the area of this region.

Solution

Sketch the region:

 $y = x^2 - 4$ $y = x^2 - 4$ $y = 4 - x^2$

Both curves cut the *x*-axis at $x = \pm 2$.

Call the area above the x-axis A_1 and the area below the x-axis A_2 .

 A_1 is bounded by $y = 4 - x^2$ and the x-axis, hence:

$$A_1 = \int_{-2}^{2} (4 - x^2) dx$$

You can see from the sketch that this area is positive, so the absolute value bars can be left out.

 A_2 is bounded by $y = x^2 - 4$ and the x-axis, hence:

$$A_2 = \left| \int_{-2}^{2} (x^2 - 4) dx \right|$$

You can see from the sketch that the integral for this area will be negative, so you must include absolute value bars. Evaluate the integrals:

$$A_{1} = \int_{-2}^{2} (4 - x^{2}) dx \qquad A_{2} = \left| \int_{-2}^{2} (x^{2} - 4) dx \right|$$

$$= \left[4x - \frac{x^{3}}{3} \right]_{-2}^{2} \qquad = \left| \left[\frac{x^{3}}{3} - 4x \right]_{-2}^{2} \right|$$

$$= \left(8 - \frac{8}{3} \right) - \left(-8 + \frac{8}{3} \right) \qquad = \left| \left(\frac{8}{3} - 8 \right) - \left(-\frac{8}{3} + 8 \right) \right|$$

$$= \frac{32}{3} \qquad = \left| -\frac{32}{3} \right|$$

$$= 10 \frac{2}{3}$$

Area of shaded region = $A_1 + A_2$ = $10\frac{2}{3} + 10\frac{2}{3} = 21\frac{1}{3}$ units²

AREA BETWEEN TWO CURVES

Example 16

Calculate the area of the region enclosed by the graphs of f(x) = x + 1 and $g(x) = x^2 - x - 2$.

Solution

Find the *x*-values of the points of intersection of the two curves by solving f(x) and g(x) simultaneously:

$$x^{2}-x-2 = x+1$$

$$x^{2}-2x-3 = 0$$

$$(x+1)(x-3) = 0$$

$$x = -1, 3$$

$$y = 0, 4$$

Sketch the region:

 $g(x) = x^2 - x - 2$ (3,4)

 $f(x) \ge g(x)$ for $-1 \le x \le 3$. Area of the region A is given by:

$$A = \int_{-1}^{3} f(x)dx - \int_{-1}^{3} g(x)dx$$
or
$$A = \int_{-1}^{3} (f(x) - g(x))dx$$
Hence:
$$A = \int_{-1}^{3} ((x+1) - (x^{2} - x - 2))dx$$

$$= \int_{-1}^{3} (-x^{2} + 2x + 3)dx$$

$$= \left[-\frac{x^{3}}{3} + x^{2} + 3x \right]_{-1}^{3}$$

$$= (-9 + 9 + 9) - \left(\frac{1}{3} + 1 - 3 \right) = 10\frac{2}{3}$$

The area between the curves is $10\frac{2}{3}$ units².