- 1 If $\tan \theta = \frac{7}{24}$ and $\pi < \theta < \frac{3\pi}{2}$, find the exact value of:
- (b) $\cos \theta$

- 2 If $\sin \theta = \frac{5}{13}$ and θ is acute, indicate whether each statement is correct or incorrect.

- (a) $\cos \theta = \frac{12}{13}$ (b) $\sec \theta = \frac{13}{5}$ (c) $\tan \theta = \frac{5}{12}$ (d) $\cot \theta = \frac{13}{12}$

- 4 If $\cos u = \frac{2}{3}$ and u is not in the first quadrant, then $\frac{\cos u 2 \cot u}{\tan u 3 \sin u}$ simplifies to: A $\frac{4(\sqrt{5} + 6)}{15}$ B $\frac{5 2\sqrt{5}}{9}$ C $\frac{2(5 \sqrt{5})}{21}$ D $\frac{14}{3(4\sqrt{5} 5)}$

(a)
$$\frac{\sin^2\theta + \cos^2\theta}{\tan^2\theta}$$

(b)
$$\frac{\sin^2 \theta}{1-\sin^2 \theta}$$

(c)
$$\frac{2\cot\alpha}{1+\cot^2\alpha}$$

(a)
$$\frac{\sin^2\theta + \cos^2\theta}{\tan^2\theta}$$
 (b) $\frac{\sin^2\theta}{1 - \sin^2\theta}$ (c) $\frac{2\cot\alpha}{1 + \cot^2\alpha}$ (d) $(\sec^2\theta - 1)\tan(\frac{\pi}{2} - \theta)$

(e)
$$\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}$$
 (f) $\sin^3 \theta + \sin \theta \cos^2 \theta$ (g) $\csc^2 \theta \sin^2 \theta$ (h) $1 - \sin^2(\pi + \theta)$

(f)
$$\sin^3 \theta + \sin \theta \cos^2 \theta$$

(g)
$$\csc^2\theta\sin^2\theta$$

(h)
$$1 - \sin^2(\pi + \theta)$$

(a)
$$\frac{x^2}{\sqrt{x^2 - a^2}}$$
 for $x = a \sec \theta$ (b) $\sqrt{a^2 - x^2}$ for $x = a \cos \theta$

for
$$x = a \sec \theta$$

(b)
$$\sqrt{a^2 - x^2}$$

for
$$x = a \cos \theta$$

9 Find the exact value of $\sec \theta$ if $\tan \theta = 0.6$ and θ is not in the first quadrant.

10 If $\sin \theta = x$, express $\frac{1 - \cos^2 \theta}{\sec^2 \theta}$ in terms of x.

11 If $a \sin^2 \theta + b \cos^2 \theta = c$, express $\sin \theta$ and $\cos \theta$ in terms of a, b and c.

13 If $\tan^2 \theta + 2 \sec^2 \theta = 5$, find the value of $\sin^2 \theta$.

(a)
$$(1 + \tan^2 u)(1 - \sin^2 u)$$

(a)
$$(1 + \tan^2 u)(1 - \sin^2 u)$$
 (b) $\frac{1}{1 - \sin V} + \frac{1}{1 + \sin V}$ (g) $2\cos^2 \frac{\pi}{6} - 1$ (h) $1 - \sin \theta \cos (\frac{\pi}{2} - \theta)$

(g)
$$2\cos^2\frac{\pi}{6}$$
 –

$$1 - \sin\theta\cos(\frac{\pi}{2} - \theta)$$

Prove the following identities.

15
$$(1 - \tan x)^2 + (1 + \tan x)^2 = 2 \sec^2 x$$

16
$$(\cot t + \csc t)^2 = \frac{1 + \cos t}{1 - \cos t}$$

Prove the following identities.

17
$$\sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta = \sin^2 \alpha - \sin^2 \beta$$
 18 $\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}$

18
$$\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}$$

Prove the following identities.

21
$$\tan \theta (1 - \cot^2 \theta) + \cot \theta (1 - \tan^2 \theta) = 0$$

22
$$\frac{\cot\theta\cos\theta}{\cot\theta+\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$$