1 (i	i)	Rearrange each of these	inear relationships into gradient-intercept for	m (y	=	mx + b
-------------	----	-------------------------	---	------	---	--------

(ii) Write the gradient and y-intercept for each of these linear equations

a
$$4y = 8x - 12$$

(i)

b
$$2y = 14x + 6$$

(i)

(ii) Gradient (
$$m$$
) = y -intercept (b) =

(ii) Gradient (
$$m$$
) = y -intercept (b) =

$$10y - 10x = 25$$

(i)

d
$$4y + 3x = 12$$

(i)

(ii) Gradient (
$$m$$
) = y -intercept (b) =

(ii) Gradient (
$$m$$
) = y -intercept (b) =

(i)

hint: be careful with negative values here

(i)

(ii) Gradient (
$$m$$
) = y -intercept (b) =

(ii) Gradient (
$$m$$
) = y -intercept (b) =

- (i) Rearrange each of these linear relationships into gradient-intercept form (y = mx + b)
 - (ii) Write the gradient and y-intercept for each of these linear equations

- **b** $\frac{1}{2}y = 2x + 3$

- (ii) Gradient (m) = y-intercept (b) =
- (ii) Gradient (m) = y-intercept (b) =

 $\frac{y-x}{3} = 2$

d $\frac{2y+6x}{5} = 6$

- (ii) Gradient (m) = y-intercept (b) =
- (ii) Gradient (m) = y-intercept (b) =

 $\frac{5y + 4x}{2} = 1$ (i)

f $5y + 3x = \frac{5}{3}$

hint: be careful with the sign of the gradient (i)

(ii) Gradient (m) = y-intercept (b) =

(ii) Gradient (m) = y-intercept (b) =