Example 4

- (a) Solve the equation $\tan^2 \theta + \tan \theta 2 = 0$, $0^\circ < \theta < 360^\circ$.
- (b) Solve the equation $\cos^2 x = 2\cos x$, $-\pi \le x \le \pi$.

Solution

(a) Factorise: $(\tan \theta - 1)(\tan \theta + 2) = 0$ $\tan \theta = 1$ or -2 $\theta = 45^{\circ}, 225^{\circ}$ or $116^{\circ}34', 296^{\circ}34'$ Solution is $\theta = 45^{\circ}, 116^{\circ}24', 225^{\circ}, 206^{\circ}24'$

Solution is $\theta = 45^{\circ}$, 116° 34′, 225°, 296° 34′.

(b) Rearrange: $\cos^2 x - 2\cos x = 0$ Factorise: $\cos x (\cos x - 2) = 0$ $\therefore \cos x = 0$ or 2 Because $|\cos x| \le 1$, the only solution is $\cos x = 0$. $\therefore x = -\frac{\pi}{2}, \frac{\pi}{2}$

Example 5

Solve the equation $\sec^2 x - 2\tan x = 4$ for $0 \le x \le 2\pi$. (Trigonometric values rounded to 3 d.p. where necessary.)

Solution

The trigonometric functions are different, but they can be linked by the identity $\sec^2 x = 1 + \tan^2 x$:

$$\sec^{2} x - 2\tan x = 4$$

$$1 + \tan^{2} x - 2\tan x = 4$$

$$\tan^{2} x - 2\tan x - 3 = 0$$

$$(\tan x - 3)(\tan x + 1) = 0$$

$$\tan x = -1 \quad \text{or} \quad 3$$

$$x = \pi - \frac{\pi}{4}, 2\pi - \frac{\pi}{4}, 1.249, \pi + 1.249$$

$$x = \frac{3\pi}{4}, \frac{7\pi}{4}, 1.249, 4.391$$