Problems with **related rates** arise when there is a function that relates two variables, e.g. x and y, where both variables are also functions of another variable, e.g. time t. For example, you may need to determine $\frac{dy}{dt}$ when $\frac{dx}{dt}$ is known. In such cases it is necessary to use the chain rule, $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$.

Remember that in a context like this, 'increasing' means a positive rate of change while 'decreasing' means a negative rate of change.

Example 13

- (a) If $V = \frac{4}{3}\pi r^3$ and $\frac{dr}{dt} = 5$, find the expression for $\frac{dV}{dt}$.
- **(b)** If $S = 4\pi r^2$ and $\frac{dr}{dt} = 5$, find the expression for $\frac{dS}{dt}$.
- (c) If $V = \frac{4}{3}\pi r^3$ and $S = 4\pi r^2$, find the expression for $\frac{dV}{dS}$.

Solution

(a)
$$\frac{dV}{dr} = \frac{4}{3}\pi \times 3r^{2}$$
$$\frac{dV}{dr} = 4\pi r^{2}$$
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$
$$\frac{dr}{dt} = 5$$
$$\frac{dV}{dt} = 4\pi r^{2} \times 5$$
$$\frac{dV}{dt} = 20\pi r^{2}$$

(b)
$$\frac{dS}{dr} = 8\pi r$$
$$\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dt}$$
$$\frac{dr}{dt} = 5$$
$$\frac{dS}{dt} = 8\pi r \times 5$$
$$\frac{dS}{dt} = 40\pi r$$

(c)
$$\frac{dV}{dr} = 4\pi r^2, \frac{dS}{dr} = 8\pi r$$
$$\frac{dV}{dS} = \frac{dV}{dr} \times \frac{dr}{dS}$$
$$\frac{dr}{dS} = \frac{1}{8\pi r}$$
$$\frac{dV}{dS} = 4\pi r^2 \times \frac{1}{8\pi r}$$
$$\frac{dV}{dS} = \frac{r}{2}$$

As $\frac{dr}{dt}$ is the same in parts (a) and (b), these results can be used to find the answer to part (c) in this case.

Example 15

Given $x = t^2 - 1$ and $y = t^3$, find as functions of t:

(a)
$$\frac{dy}{dx}$$

(b)
$$\frac{d^2y}{dx^2}$$

Solution

(a)
$$\frac{dx}{dt} = 2t$$
$$y = t^{3}$$
$$\frac{dy}{dt} = 3t^{2}$$
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$
$$\frac{dy}{dx} = 3t^{2} \times \frac{1}{2t} = \frac{3t}{2}$$

(b)
$$\frac{dy}{dx} = \frac{3t}{2}, \frac{dx}{dt} = 2t$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{dy}{dx}\right) \times \frac{dt}{dx}$$

$$\frac{d}{dt} \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{3t}{2}\right) = \frac{3}{2}$$

$$\frac{dt}{dx} = \frac{1}{2t}$$

$$\frac{d^2y}{dx^2} = \frac{3}{2} \times \frac{1}{2t} = \frac{3}{4t}$$

Example 16

A spherical balloon is being inflated so that its radius increases at the constant rate of 3 cm/min. At what rate is its volume increasing when the radius of the balloon is 5 cm?

Solution

If r is the radius of the balloon, its volume is $V = \frac{4}{3}\pi r^3$. Given $\frac{dr}{dt} = 3$, need to find $\frac{dV}{dt}$ for r = 5.

By the chain rule:
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

But:
$$V = \frac{4}{3}\pi r^3$$

So:
$$\frac{dV}{dr} = 4\pi r^2$$

Thus:
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt} = 4\pi r^2 \times 3$$

For
$$r = 5$$
: $\frac{dV}{dt} = 4\pi \times 5^2 \times 3$

$$=300\pi \text{cm}^3/\text{min}$$

Example 18

The volume of water in a hemispherical bowl of radius 10 cm is $V = \frac{1}{3}\pi x^2(30 - x)$, where x cm is the depth of water at time t.

The bowl is being filled at a constant rate of $2\pi \text{cm}^3/\text{min}$. At what rate is the depth increasing when the depth is 2 cm?

Solution

Given $\frac{dV}{dt} = 2\pi$, need to find $\frac{dx}{dt}$ when x = 2.

The related variables are V, x and t.

$$V = \frac{1}{3}\pi x^{2}(30-x)$$

$$= 10\pi x^{2} - \frac{1}{3}\pi x^{3}$$

$$\frac{dV}{dx} = 20\pi x - \pi x^{2} = \pi x(20-x)$$

$$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt}$$

$$2\pi = \pi x (20 - x) \times \frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{2}{\sqrt{2\pi x}}$$

Method 2

$$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt}$$

$$2\pi = \pi x (20 - x) \times \frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$$

$$\frac{dx}{dt} = \frac{1}{\pi x (20 - x)} \times 2\pi$$

$$\frac{dx}{dt} = \frac{2}{x(20 - x)}$$

$$\frac{dx}{dt} = \frac{2}{x(20 - x)}$$

When
$$x = 2$$
: $\frac{dx}{dt} = \frac{1}{18}$ cm/s

As an extension to this question, you might ask: 'At what depth is the depth increasing at a minimum rate?' This is the same as asking: 'For what value of x is $\frac{dx}{dt}$ a minimum?'

Note that the formula for the volume of water in the hemispherical bowl at any depth a can be calculated by finding the volume generated by rotating the circle with equation $x^2 + y^2 = 100$ between y = 10 - a and y = 10.

Example 17

A vessel containing water has the shape of an inverted right circular cone with base radius $2 \, \text{m}$ and height $5 \, \text{m}$. The water flows out of the apex of the cone at a constant rate of $0.2 \, \text{m}^3/\text{min}$. Find the rate at which the water level is dropping when the depth of the water is $4 \, \text{m}$.

Solution

Let the depth of the water be h m, the radius of the cone at the water level be r m and the volume of the water be V m³ at time t minutes. The volume of the water at any time t is $V = \frac{1}{3}\pi r^2 h$.

Given
$$\frac{dV}{dt} = -0.2$$
, need to find $\frac{dh}{dt}$ when $h = 4$.

 $\frac{dV}{dt}$ is negative: the volume is decreasing, because the water is flowing out of the vessel.

To find the link between r and h, use similar triangles.

From proportional sides:
$$\frac{r}{h} = \frac{2}{5}$$

$$r = \frac{2h}{5}$$
Volume:
$$V = \frac{1}{3}\pi r^2 h$$
Substitute
$$r = \frac{2h}{5}$$
:
$$V = \frac{1}{3}\pi \times \left(\frac{2h}{5}\right)^2 \times h$$

$$V = \frac{4\pi h^3}{75}$$
Hence:
$$\frac{dV}{dh} = \frac{4\pi h^2}{25}$$
Chain rule:
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$

Hence:
$$\frac{dV}{dh} = \frac{4\pi h^2}{25}$$
Chain rule:
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$

$$\therefore -0.2 = \frac{4\pi h^2}{25} \times \frac{dh}{dt}$$

$$\frac{dh}{dt} = -\frac{5}{4\pi h^2}$$
When $h = 4$:
$$\frac{dh}{dt} = -\frac{5}{4\pi \times 16} = -\frac{5}{64\pi}$$

$$= -0.0249 \text{ m/min}$$

Thus the water level is decreasing at a rate of 0.0249 m/min.

Alternatively: *V* and *h* are both dependent on time, so you can differentiate both sides of the volume equation with respect to time.

$$V = \frac{4\pi h^3}{75}$$

$$\frac{dV}{dt} = \frac{4\pi}{75} \times \frac{d}{dt} (h^3)$$
Chain rule:
$$= \frac{4\pi}{75} \times \frac{d}{dh} (h^3) \times \frac{dh}{dt}$$

$$= \frac{4\pi}{75} \times 3h^2 \times \frac{dh}{dt}$$

$$= \frac{dV}{dt} = -0.2, \text{ so: } -0.2 = \frac{4\pi h^2}{25} \times \frac{dh}{dt} \quad \text{as before.}$$

Example 14

If $x = 5t \cos \alpha$ and $y = 5t \sin \alpha - \frac{1}{2}gt^2$, where α and g are constants, find:

- (a) the expression for $\frac{dy}{dx}$ as a function of t (b) the expression for $\frac{dy}{dx}$ when t=2
- (c) if $\alpha = \frac{\pi}{4}$ and g = 9.8, find the value of $\frac{dy}{dx}$ when t = 2.

Solution

(a)
$$\frac{dx}{dt} = 5\cos\alpha$$

$$y = 5t\sin\alpha - \frac{1}{2}gt^2$$

$$\frac{dy}{dt} = 5\sin\alpha - gt$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$

$$\frac{dy}{dx} = \frac{5\sin\alpha - gt}{2}$$

(b)
$$t = 2$$

$$\frac{dy}{dx} = \frac{5\sin\alpha - g \times 2}{5\cos\alpha}$$

$$\frac{dy}{dx} = \frac{5\sin\alpha - 2g}{5\cos\alpha}$$

$$t = 2$$

$$\frac{dy}{dx} = \frac{5\sin\alpha - g \times 2}{5\cos\alpha}$$

$$\frac{dy}{dx} = \frac{5\sin\alpha - 2g}{5\cos\alpha}$$

$$\frac{dy}{dx} = \frac{5\sin\alpha - 2g}{5\cos\alpha}$$

$$\frac{dy}{dx} = \frac{5\sin\frac{\pi}{4} - 2 \times 9.8}{5\cos\frac{\pi}{4}}$$

$$\frac{dy}{dx} = \frac{\frac{5}{\sqrt{2}} - 19.6}{\frac{5}{\sqrt{2}}}$$

$$\frac{dy}{dx} = -4.544$$

Example 19

A ladder 10 m long has its upper end against a vertical wall and its lower end on a horizontal floor. The lower end is slipping away from the wall at a constant speed of 4 m/s. Find the rate at which the upper end of the ladder is slipping down the wall when the lower end is 6 m from the wall. What is this rate when the upper end is very close to the ground?

Solution

At any time t, the lower end of the ladder is x m from the wall and the upper end is y m above the ground.

Given $\frac{dx}{dt} = 4$, need to find $\frac{dy}{dt}$ when x = 6. By Pythagoras' theorem: $x^2 + y^2 = 100$

$$x^{2} + y^{2} = 100$$

$$y = \sqrt{100 - x^{2}}, 0 \le x \le 10$$

$$\frac{dy}{dx} = \frac{1}{2} (100 - x^{2})^{-\frac{1}{2}} \times (-2x)$$

$$= \frac{-x}{\sqrt{100 - x^{2}}}, 0 \le x < 10$$

