- **1** (a) Expand $(\cos \theta + i \sin \theta)^4$ by de Moivre's theorem and by the binomial theorem (Pascal's triangle) to show:
 - (i) $\cos 4\theta = 8\cos^4\theta 8\cos^2\theta + 1$
- (ii) $\sin 4\theta = 4\cos^3 \theta \sin \theta 4\sin^3 \theta \cos \theta$
- **(b)** Obtain an expression for $\tan 4\theta$ in terms of $\tan \theta$.
- (c) By making suitable substitutions, solve the following. (i) $8x^4 8x^2 + 1 = 0$
- (ii) $16x^4 16x^2 + 1 = 0$ (iii) $16x^4 16x^2 + 3 = 0$ (iv) $x^4 + 4x^3 6x^2 4x + 1 = 0$

- 2 (a) Given that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ (see Example 19, page 20), solve $8x^3 6x 1 = 0$.
 - **(b)** Show that $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9} = \frac{1}{8}$.

- 3 Let $z = \cos \theta + i \sin \theta$.
 - (a) Show that: (i) $z^n + z^{-n} = 2\cos n\theta$ (ii) $z^n z^{-n} = 2i\sin n\theta$
 - **(b)** Show that $(z-z^{-1})^3 = (z^3-z^{-3}) 3(z-z^{-1})$ **(c)** Hence show that $\sin^3\theta = \frac{1}{4}(3\sin\theta \sin 3\theta)$.

- **4** (a) Let $z = \cos \theta + i \sin \theta$ and let $w = z + \frac{1}{z}$. Given $z^n + z^{-n} = 2 \cos n\theta$, prove that $w^3 2w^2 w + 2 = \left(z^3 + \frac{1}{z^3}\right) 2\left(z^2 + \frac{1}{z^2}\right) + 2\left(z + \frac{1}{z}\right) 2$.
 - **(b)** Hence solve $\cos 3\theta 2\cos 2\theta + 2\cos \theta 1 = 0$ for $-\pi \le \theta \le \pi$.

5 Express $\cos 3\theta$ and $\cos 2\theta$ in terms of $\cos \theta$. Show that the equation $\cos 3\theta = \cos 2\theta$ can be expressed as $4x^3 - 2x^2 - 3x + 1 = 0$, where $x = \cos \theta$. By solving this equation for x, find the exact value of $\cos \frac{2\pi}{5}$.

- **6** (a) Use de Moivre's theorem to express $\cos 4\theta$ in terms of $\cos \theta$.
 - (b) Use your result from part (a) to solve the equation $8x^4 8x^2 + 1 = 0$.
 - (c) Show that: $\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0$.
 - (d) Show that: $\cos \frac{\pi}{8} \cos \frac{3\pi}{8} \cos \frac{5\pi}{8} \cos \frac{7\pi}{8} = \frac{1}{8}$.

- **7** (a) Use de Moivre's theorem to express $\cos 5\theta$ and $\sin 5\theta$ as powers of $\cos \theta$ and $\sin \theta$.

 - (b) Hence express $\tan 5\theta$ as a rational function of t where $t = \tan \theta$. (c) By considering the roots of $\tan 5\theta = 0$, deduce that $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} \tan \frac{3\pi}{5} \tan \frac{4\pi}{5} = 5$.