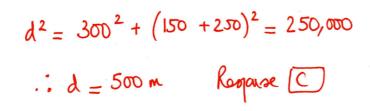
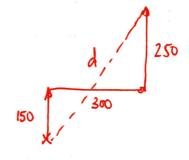
- 1 A car is moving at a speed of 100 km h⁻¹ and a truck is moving at 90 km h⁻¹ in the opposite direction. The relative velocity of the car with respect to the truck is:
 - A 10 km h⁻¹ in the direction of the truck
- B 10 km h⁻¹ in the direction of the car
- C 190 km h⁻¹ in the direction of the truck
- 190 km h⁻¹ in the direction of the car

- 2 On his way home from training, Mitch walks along three streets. He walks 150 m north, 300 m east and 250 m north. The magnitude of Mitch's resultant displacement is:
 - A 200 m
- B 400 m
- C 500 m
- D 700 m





- 3 Three forces are acting simultaneously in the same plane on an object. The resultant force is $\underline{F} = 520 \,\text{N}$ due east. Which of the following combinations of forces will give this resultant force?
 - **A** $F_1 = 350 \text{ N west}, F_2 = 270 \text{ N east}, F_3 = 440 \text{ N west}$
 - **B** $F_1 = 350 \text{ N east}, F_2 = 270 \text{ N west}, F_3 = 440 \text{ N east}$
 - C $F_1 = 350 \text{ N east}, F_2 = 270 \text{ N west}, F_3 = 440 \text{ N west}$
 - **D** $F_1 = 350 \text{ N west}, F_2 = 270 \text{ N east}, F_3 = 440 \text{ N east}$
- East is the positive direction West (negative) 520 N
- \boxed{A} is $-350 + 270 440 = -20 \,\text{N} \left(\text{West}\right) \approx 100 \,\text{NO}$
- B is 350 270 + 440 = 520 N (East) YES.
- [c] is 350 270 440 = -360 N (West) NO
- D is -350 + 270 + 440 = 360 N (East) NO)

- 4 A soccer ball is struck with a force of 420 N in the direction N22°E. The northerly and easterly components of this force are F₁ and F₂ respectively. The magnitudes of these forces are:
 - **A** $F_1 = 87 \text{ N}, F_2 = 411 \text{ N}$
- B $F_1 = 411 \text{ N}, F_2 = 87 \text{ N}$
- **C** $F_1 = 157 \text{ N}, F_2 = 389 \text{ N}$
- D $F_1 = 389 \text{ N}, F_2 = 157 \text{ N}$

Horizontal component is 420 sin 22 = 157 N

Vertical component is 420 cos 22 = 389 N

So D

5 Forces are acting on an object. Calculate the resultant force acting on the object for each of the following:

(a)
$$E_1 = 250 \text{ N}$$
 north, $E_2 = 450 \text{ N}$ south, $E_3 = 125 \text{ N}$ north

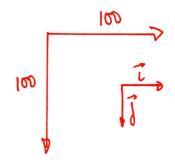
(b)
$$F_1 = 100 \text{ N east}, F_2 = 100 \text{ N south}$$

a) = = 250 -450+125 = -75 so 75N South

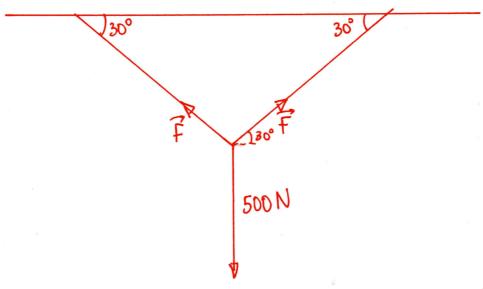
1) ZF = 1007 + 1007

or $\sqrt{2}$ × 100 Newton in the

direction SE.



6 A particle of mass 50 kg is suspended by two strings attached to two points in the same horizontal plane. If the two strings each make angles of 30° respectively to the horizontal, find the magnitude of the tension in each string, in newtons, given that $\sin 30^\circ = \frac{1}{2}$.

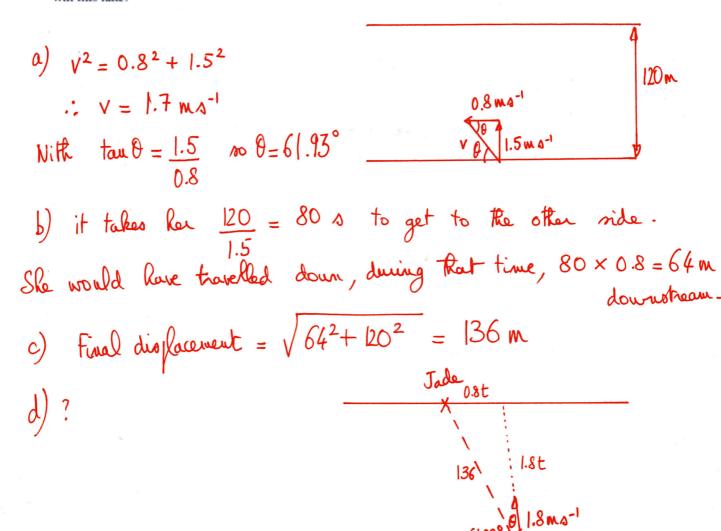


Weight =
$$50 \times 10 = 500 \text{ N}$$
. assuming $g = 10 \text{ ms}^{-2}$
The tertical equilibrium of the forces must be zero, i.e. $500 = |F| \sin 30 + |F| \sin 30$

or
$$500 = 2|\vec{F}| \sin 30$$

 $500 = |\vec{F}|$ Rence $|\vec{F}| = 500 \text{ N}$.

- 7 Jaide paddles her canoe in a direction perpendicular to the riverbanks. The river is 120 m wide. The canoe's speed in this direction is 1.5 m s⁻¹. The water in the river is flowing at 0.8 m s⁻¹ and you can assume that the riverbanks are parallel straight lines.
 - (a) Calculate the velocity of the canoe relative to the bank. Give the angle correct to two decimal places.
 - (b) At what distance, in the direction downstream from the starting point, will Jaide get to the other riverbank?
 - (c) Calculate Jaide's final displacement from the starting point.
 - (d) Jake is going to cross the river in another canoe. He can paddle at the speed of 1.8 m s⁻¹ relative to the water's flow. At what direction should Jake row to get to the same end-point as Jaide, and how much time will this take?



- 8 A particle is projected with a velocity whose horizontal and vertical components are 6 m s⁻¹ and 4 m s⁻¹ respectively. Use $g = 10 \,\mathrm{m \, s}^{-2}$.
 - (a) Draw a diagram to show this information.
- (b) What is the angle of projection?
- (c) Find expressions for y(t) and r(t).
- (d) Find the greatest height reached.

(e) Find the horizontal range.

b)
$$\tan \theta = \frac{4}{6} = \frac{2}{3}$$
 : $\theta = 33.69^{\circ}$

9
$$\sqrt{(0)} = 6\tau + 4\tau$$

$$\vec{\alpha} = -\beta \vec{j}$$

at
$$t=0$$
 $\vec{V}(0)=6\vec{c}+4\vec{j}$.

Hence
$$\vec{V}(t) = -gt\vec{J} + 6\vec{c} + 4\vec{J} = [-gt + 4]\vec{J} + 6\vec{c}$$

$$\therefore \vec{\Gamma(t)} = \left[-\frac{1}{2}gt^2 + 4t \right] \vec{J} + 6t \vec{L} + \vec{K}$$

At
$$t=0$$
, $r(0)=0$ hence $\vec{K}=\vec{0}$

$$\vec{r}(t) = 6t\vec{l} + \left[-\frac{1}{2}gt^2 + 4t \right] \vec{j} = 6t\vec{l} + \left[-5t^2 + 4t \right] \vec{j}$$

i.e.
$$-10t + 4 = 0$$
 $\Rightarrow t = \frac{4}{10} = \frac{2}{5} = 0.4 \text{ s}.$

At
$$t = 0.4$$
 s, the vertical position is $\left[-5 \times 0.4^2 + 4 \times 0.4\right] = 0.8$ m

e) The horizontal range is reached when
$$y=0$$
, i.e. $-5t^2+4t=0$, which occurs at either $t=0$ or $t=4/5=0.8$ s

$$-5t^2+4t=0$$
, which occurs at either $t=0$ or $t=4/5=0.8$

At
$$t = 0.8 \, \text{s}$$
, $x(0.8) = 6 \times 0.8 = 4.8 \, \text{m}$

- 9 A cricketer hits a cricket ball off the ground towards a fielder who is 65 m away. The ball reaches a maximum height of $4.9 \,\mathrm{m}$ and the horizontal component of the velocity is $28 \,\mathrm{m \, s^{-1}}$. Use $g = 9.8 \,\mathrm{m \, s^{-2}}$.
 - (a) Find expressions for v(t) and r(t).
 - (b) How much time does it take for the ball to reach its greatest height?
 - (c) How far has the ball travelled horizontally when it has descended to a height of 1.3 m?
 - (d) Find the constant speed with which the fielder must run forward, starting at the instant the ball is hit, in order to catch the ball at a height of 1.3 m above the ground.

a)
$$\vec{a} = -g\vec{j}$$
 $\vec{V}(t) = -gt\vec{j} + \vec{C}$

At $t = 0$ $\vec{V}(0) = 28\vec{t} + \vec{k}\vec{j}$ $= 28\vec{t} + [R - gt]\vec{j} = 28\vec{t} + [R - 9t]\vec{j}$

Hence $\vec{r}(t) = 28t\vec{t} + [Rt - \frac{1}{2}gt^2]\vec{j} + \vec{k}$

At $t = 0$, $\vec{r}(0) = \vec{O}$, so $\vec{k} = \vec{O}$ $\therefore \vec{r}(\vec{k}) = 28t\vec{t} + [Rt - \frac{1}{2}gt^2]\vec{j}$

When $t = \frac{R}{9.8}$, then $y = 4.9$ therefore: $k \times \frac{R}{9.8} - \frac{1}{2} \times 9.8 \times (\frac{R}{9.8})^2 = 4.9$

Hence $R^2 \begin{bmatrix} \frac{1}{9.8} - \frac{1}{2 \times 9.8} & \frac{1}{9.8} & \frac{1}{9.8$

10 A particle is projected from a point 15 m above horizontal ground. At its highest point it just clears the top of a wall 26.25 m high and 30 m away. Use $g = 10 \text{ m s}^{-2}$.

(b) Find expressions for y(t) and r(t). (a) Draw a diagram to show this information.

b)
$$\vec{a} = -g\vec{j} = -10\vec{j}$$

$$\vec{v}(t) = -10t\vec{j} + \vec{c}$$

$$S_0 \vec{V}(t) = V_{x_0} \vec{c} + [V_{y_0} - 10t] \vec{j}$$

At
$$t=0$$
 $\overrightarrow{r(0)} = 15\overrightarrow{j}$ so $\overrightarrow{K} = 15\overrightarrow{j}$

$$r(t) = V_{x_0} t \vec{i} + [V_0 t - 5t^2 + 15] \vec{j}$$

$$\int_{\mathcal{Y}} \chi(t) = V_{x_0} t$$

$$\left(y(t) = V_{y_0} t - 5t^2 + 15 \right)$$

So
$$\int \chi(t) = V_{x_0}t$$

$$\begin{cases} \chi(t) = V_{x_0}t \\ y(t) = V_{y_0}t - 5t^2 + 15 \end{cases} \iff \begin{cases} t = \frac{\chi}{V_{x_0}} \\ y = V_{y_0}\frac{\chi}{V_{x_0}} - \frac{5\chi^2}{V_{x_0}^2} + 15 \end{cases}$$

So when
$$t = \frac{V_{y0}}{10}$$
, $y = 26.25 = \frac{V_{y0}}{10} \times \frac{V_{y0}}{10} - 5\left(\frac{V_{y0}}{10}\right)^2 + 15$.

$$V_{y0}^{2} \left[\frac{1}{10} - \frac{5}{100} \right] = 26.25 - 15 = 11.25$$

$$\therefore V_{y0}^{2} = \frac{11.25}{0.05} \quad \therefore V_{y0} = 15 \text{ m/s}^{-1}$$

$$\frac{1}{100} = \frac{11.25}{0.05}$$
Therefore, as when $x = 30$, $y = 26.25 = \frac{15 \times 30}{V_{\infty}} - \frac{5 \times \frac{225}{100}}{100} + \frac{15}{100}$

$$\frac{450}{100} = 22.5$$
 so $\sqrt{x_0} = 20 \text{ m/s}^{-1}$

$$\frac{450}{V_{xo}} = \frac{22.5}{V_{xo}} = \frac{20 \text{ m/s}^{-1}}{V_{xo}}$$
There are
$$\frac{15^{2} + 20^{2}}{V_{xo}} = \frac{20 \text{ m/s}^{-1}}{V_{xo}}$$

$$\int_{\text{Fedd}} = \sqrt{10^{4} + 20^{4}} = \frac{15}{20} = \frac{3}{4}$$

$$\int_{\text{Section 4-Page 7 of 8}} 0 \approx 36.87^{\circ}$$

11 A tennis ball is struck with a force of 300 N in the direction S40°W. The southerly and westerly components of this force are F_1 and F_2 respectively. The magnitudes of these forces are:

A
$$F_1 = 230 \text{ N}, F_2 = 230 \text{ N}$$

B
$$F_1 = 193 \text{ N}, F_2 = 230 \text{ N}$$

D $F_1 = 150 \text{ N}, F_2 = 260 \text{ N}$

C
$$F_1 = 230 \text{ N}, F_2 = 193 \text{ N}$$

D
$$F_1 = 150 \,\text{N}, F_2 = 260 \,\text{N}$$

