EXPANSION OF $(x + y)^n$ – PASCAL'S TRIANGLE – BINOMIAL THEOREM

By multiplying to expand the brackets, it can be shown that $(x + y)^n$ is equal to the following:

$$n = 0 (x + y)^{0} = 1$$

$$n = 1 (x + y)^{1} = x + y$$

$$n = 2 (x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$n = 3 (x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$n = 4 (x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$n = 5 (x + y)^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}$$

$$n = 6 (x + y)^{6} = x^{6} + 6x^{5}y + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6xy^{5} + y^{6}$$

The coefficients of the $(x + y)^5$ successive powers of the expansion of (x + y)can be arranged in a triangular pattern called Pascal's triangle¹, as shown below.

In fact, all these coefficients can also be written as combinations, as follows:

Therefore, it seems we can write the general expansion of $(x + y)^n$ as:

$$(x+y)^n = \sum_{k=0}^n {}^n C_k x^{n-k} y^k$$

This is known as the **binomial theorem** (to be formally demonstrated later).

¹ after the French mathematician <u>Blaise Pascal</u>, although this was studied it centuries before him in <u>India (by Pingala circa 200 AD)</u>, <u>Persia [now Iran, by Al-Karaji (953–1029)]</u>_China [Jia Xian(1010–1070)], <u>Germany, and Italy (https://en.wikipedia.org/wiki/Pascal%27s_triangle)</u>

EXPANSION OF $(x + y)^n$ – PASCAL'S TRIANGLE – BINOMIAL THEOREM

Example 32

Write the expansion of $(1 + 2x)^4$, using Pascal's triangle to obtain the coefficients.

Solution

Write:
$$(1+2x)^4 = {}^4C_0 + {}^4C_1(2x)^1 + {}^4C_2(2x)^2 + {}^4C_3(2x)^3 + {}^4C_4(2x)^4$$

From Pascal's triangle: ${}^4C_0 = 1$, ${}^4C_1 = 4$, ${}^4C_2 = 6$, ${}^4C_3 = 4$, ${}^4C_4 = 1$
 $\therefore (1+2x)^4 = 1 + 4 \times 2x + 6 \times 4x^2 + 4 \times 8x^3 + 1 \times 16x^4$
 $= 1 + 8x + 24x^2 + 32x^3 + 16x^4$

Example 33

Write the expansion of $(1-x)^3$.

Solution

Write:
$$(1-x)^3 = {}^3C_0 + {}^3C_1(-x)^1 + {}^3C_2(-x)^2 + {}^3C_3(-x)^3$$

From Pascal's triangle: ${}^3C_0 = 1$, ${}^3C_1 = 3$, ${}^3C_2 = 3$, ${}^3C_3 = 1$
 $\therefore (1-x)^3 = 1 + 3 \times (-x) + 3 \times x^2 + 1 \times (-x^3)$
 $= 1 - 3x + 3x^2 - x^3$

Example 35

Find the coefficient of a^4 in $(1 + 5a)^5$.

Solution

For the expansion, you can write $T_1 = {}^5C_0$, $T_2 = {}^5C_1(5a)^1$ and so on, leading to the general term $T_{r+1} = {}^5C_r(5a)^r$. For the term in a^4 , r = 4: $T_5 = {}^5C_4(5a)^4 = 5 \times 5^4a^4 = 3125a^4$

Hence the coefficient of a^4 is 3125.

Example 36

Use the expansion of $\left(1 - \frac{1}{x}\right)^5$ to find an approximation for $\left(\frac{99}{100}\right)^5$ correct to four decimal places.

Solution

This can be written as an expansion:
$$\left(\frac{99}{100}\right)^5 = \left(1 - \frac{1}{100}\right)^5$$

$$= 1 - 5 \times \frac{1}{100} + 10 \times \frac{1}{100^2} - 10 \times \frac{1}{100^3} + \dots$$

$$= 1 - \frac{5}{100} + \frac{10}{10000} - \frac{10}{1000000} + \dots$$

$$= 1 - 0.05 + 0.001 - 0.00001 + \dots$$

$$\approx 0.9510$$

As the accuracy is only to four decimal places, the terms smaller than 0.000 01 are insignificant and can be ignored.

∴
$$\left(\frac{99}{100}\right)^5 \approx 0.9510$$
 correct to four decimal places.

EXPANSION OF $(x + y)^n$ - PASCAL'S TRIANGLE - BINOMIAL THEOREM

PROOF BY INDUCTION OF THE BINOMIAL THEOREM:

For any positive integer
$$n$$
: $(x+y)^n = \sum_{k=0}^n {}^nC_k x^{n-k} y^k$ where: ${}^nC_k = \frac{n!}{(n-k)! k!}$

Step 1: We demonstrate it is true for n = 1

For
$$n = 1$$
, $(x + y)^1 = x + y$ whereas: $(x + y)^1 = \sum_{k=0}^{1} {}^{1}C_k x^{1-k} y^k$

$$(x + y)^1 = \frac{1!}{(1 - 0)!} x^{1-0} y^0 + \frac{1!}{(1 - 1)!} x^{1-1} y^1$$

$$(x + y)^1 = \frac{1!}{1!} x^0 x^1 + \frac{1!}{0!} x^0 y^1 = \frac{1}{1 \times 1} x + \frac{1}{1 \times 1} 1 \times y = x + y$$

Therefore $(x+y)^n = \sum_{k=0}^n {}^nC_k x^{n-k} y^k$ is indeed true for n=1

Step 2: We demonstrate that if it is true for (n-1), then it is true for n.

Suppose it is true for
$$(n-1)$$
:
$$(x+y)^{n-1} = \sum_{k=0}^{n-1} {n-1 \choose k} x^{(n-1)-k} y^k$$

$$(x+y)^n = (x+y)(x+y)^{n-1} = (x+y) \left[\sum_{k=0}^{n-1} {n-1 \choose k} x^{(n-1)-k} y^k \right]$$

$$(x+y)^n = x \left[\sum_{k=0}^{n-1} {n-1 \choose k} x^{(n-1)-k} y^k \right] + y \left[\sum_{k=0}^{n-1} {n-1 \choose k} x^{(n-1)-k} y^k \right]$$

$$(x+y)^n = \sum_{k=0}^{n-1} {n-1 \choose k} x^{n-k} y^k + \sum_{k=0}^{n-1} {n-1 \choose k} x^{(n-1)-k} y^{k+1}$$

$$(x+y)^n = \sum_{k=0}^{n-1} {n-1 \choose k} x^{n-k} y^k + \sum_{j=0}^{n-1} {n-1 \choose j} x^{(n-1)-j} y^{j+1}$$
we just replaced the letter k by the letter j in the second expression
$$(x+y)^n = \sum_{k=0}^{n-1} {n-1 \choose k} x^{n-k} y^k + \sum_{j=0}^{n-1} {n-1 \choose j+1-1} x^{n-(j+1)} y^{j+1}$$

Now in the 2^{nd} term, we substitute j + 1 = k and therefore, when j = 0, then k = 1, and when j = n - 1, then k = n

$$(x+y)^n = \sum_{k=0}^{n-1} {n-1 \choose k} x^{n-k} y^k + \sum_{k=1}^{n} {n-1 \choose k-1} x^{n-k} y^k$$

$$(x+y)^n = \left[{n-1 \choose 0} x^n y^0 + \sum_{k=1}^{n-1} {n-1 \choose k} x^{n-k} y^k \right] + \left[\sum_{k=1}^{n-1} {n-1 \choose k-1} x^{n-k} y^k + {n-1 \choose n-1} x^{n-n} y^n \right]$$

EXPANSION OF $(x + y)^n$ - PASCAL'S TRIANGLE - BINOMIAL THEOREM

$$(x+y)^n = \left[\frac{(n-1)!}{0!(n-1)!}x^n + \sum_{k=1}^{n-1} {n-1 \choose k} x^{n-k} y^k\right] + \left[\sum_{k=1}^{n-1} {n-1 \choose k-1} x^{n-k} y^k + \frac{(n-1)!}{0!(n-1)!} y^n\right]$$

$$(x+y)^n = \left[x^n + \sum_{k=1}^{n-1} {n-1 \choose k} x^{n-k} y^k \right] + \left[\sum_{k=1}^{n-1} {n-1 \choose k-1} x^{n-k} y^k + y^n \right]$$

$$(x+y)^n = x^n + \sum_{k=1}^{n-1} {n-1 \choose k} x^{n-k} y^k + \sum_{k=1}^{n-1} {n-1 \choose k-1} x^{n-k} y^k + y^n$$

$$(x+y)^n = x^n + \sum_{k=1}^{n-1} \left[{n-1 \choose k} + {n-1 \choose k-1} \right] x^{n-k} y^k + y^n$$

Now it can be demonstrated (see footnoteⁱ) that $^{n-1}C_k + ^{n-1}C_{k-1} = {}^nC_k$

$$(x+y)^n = \frac{n!}{0! \, n!} x^n + \sum_{k=1}^{n-1} \frac{n!}{k! \, (n-k)!} x^{n-k} y^k + \frac{n!}{n! \, 0!} y^n$$

Therefore:
$$(x + y)^n = \sum_{k=0}^n {}^nC_k x^{n-k} y^k$$

So if $(x+y)^n = \sum_{k=0}^n {}^nC_k x^{n-k} y^k$ is true for (n-1), then it is true for n.

Step 3:

- At Step 1, we proved that $(x+y)^n = \sum_{k=0}^n {}^nC_k x^{n-k} y^k$ is true for n=1
- At Step 2, we proved that if $(x+y)^n = \sum_{k=0}^n {}^n C_k x^{n-k} y^k$ is true for (n-1) then it is true for n
- Therefore, by mathematical induction, it must be true for n = 2, and then for n = 3, for n = 4, etc., i.e. it is true for any positive integer n

$$\frac{1}{n^{-1}C_{k}} + \frac{n^{-1}C_{k-1}}{(n-1-k)!k!} + \frac{(n-1)!}{[n-1-(k-1)]!(k-1)!} = \frac{(n-1)!}{(n-1-k)!k!} + \frac{(n-1)!}{(n-k)!(k-1)!}$$

$$\frac{1}{n^{-1}C_{k}} + \frac{n^{-1}C_{k-1}}{(n-k)!(n-1-k)!(n-k)!(n-1-k)!k!} + \frac{k(n-1)!}{k(n-k)!(k-1)!} = \frac{(n-k)(n-1)!}{(n-k)!(k-1)!} + \frac{k(n-1)!}{(n-k)!k!} + \frac{k(n-1)!}{(n-k)!k!} + \frac{k(n-1)!}{(n-k)!k!}$$

$$\frac{1}{n^{-1}C_{k}} + \frac{1}{n^{-1}C_{k-1}} = \frac{n(n-1)! - k(n-1)!}{(n-k)!k!} + \frac{k(n-1)!}{(n-k)!k!}$$
we expanded the first term
$$\frac{1}{n^{-1}C_{k}} + \frac{1}{n^{-1}C_{k-1}} = \frac{n! - k(n-1)!}{(n-k)!k!} + \frac{k(n-1)!}{(n-k)!k!}$$

$$\frac{1}{n^{-1}C_{k}} + \frac{1}{n^{-1}C_{k-1}} = \frac{n! - k(n-1)! + k(n-1)!}{k!(n-k)!}$$
therefore:
$$\frac{1}{n^{-1}C_{k}} + \frac{1}{n^{-1}C_{k-1}} = \frac{n^{-1}C_{k}}{k!(n-k)!}$$