1 A particle moves in a straight line so that at time t its displacement from a fixed origin is x and its velocity is v. If its acceleration is given by  $\ddot{x} = 4 + x$  and v = 1 when x = 0, find v when x = 1.

$$\ddot{x} = 4 + \chi \qquad \Rightarrow \qquad \frac{d}{d\chi} \left(\frac{1}{2}V^{2}\right) = 4 + \chi \qquad : \quad \frac{1}{2}V^{2} = 4\chi + \frac{\chi^{2}}{2} + C$$
When  $\chi = 0$ ,  $V = 1$ , i.e.  $\frac{1}{2}x^{2} = 4\chi + 0 + \frac{\chi^{2}}{2} + C$  so  $C = \frac{1}{2}$ 

$$\therefore \frac{1}{2}V^{2} = 4\chi + \frac{\chi^{2}}{2} + \frac{1}{2} \qquad \text{so } V^{2} = \chi^{2} + 8\chi + 1$$
So  $V = \pm \sqrt{\chi^{2} + 8\chi + 1} \qquad \Delta = 8^{2} - 4 = 60$ 

$$\chi = -\frac{8 \pm \sqrt{60}}{2} \qquad \text{two negative nots. So}$$
So when  $\chi > 0$ ,  $\chi$  is also positive.
$$V = \sqrt{\chi^{2} + 8\chi + 1} \qquad \text{Hence} \qquad V(1) = \sqrt{1^{2} + 8\chi + 1} = \sqrt{10}$$

3 At time t, the displacement of a particle moving in a straight line is x. If the acceleration is given by  $\frac{d^2x}{dt^2} = 3 - 4x$  and the particle starts from rest at x = 1, find its velocity at any position. At what other point, if any, does the particle come to rest?

$$\frac{d^{2}x}{dt^{2}} = 3 - 4x \implies \frac{d}{dx} \left(\frac{1}{2}V^{2}\right) = 3 - 4x$$

$$80 \quad \frac{1}{2}V^{2} = 3x - 4\frac{x^{2}}{2} + C \qquad 80 \quad V^{2} = 6x - 4x^{2} + C$$

$$81 \quad x = 1, \quad V = 0 \qquad 80 \quad O^{2} = 6x - 4x + C \qquad 80 \quad C = -2$$

$$1 \quad V^{2} = 6x - 4x^{2} - 2 = 2\left(3x - 2x^{2} - 1\right) = 2\left(x - 1\right)\left(-2x + 1\right)$$

$$1 \quad V = 0 \qquad \text{when} \qquad x = 1 \quad \text{(which we knew)}$$

$$2 \quad \text{and} \quad x = \frac{1}{2}$$

7 A particle moves in a straight line and its acceleration at any time is given by  $\frac{d^2x}{dt^2} = \sin^2 x$ . Find  $\frac{dx}{dt}$  given that  $\frac{dx}{dt} = 1$  when x = 0.

$$\frac{d^2x}{dt^2} = \sin^2 x \iff \frac{d}{dx} \left(\frac{1}{2}V^2\right) = \sin^2 x \qquad \text{so } \frac{1}{2}V^2 = \int \sin^2 x \, dx$$

$$V^2 = \int 2\sin^2 x \, dx = \int (1 - \cos 2x) \, dx = x - \frac{\sin 2x}{2} + C$$
When  $x = 0$  
$$\frac{dx}{dt} = 1$$
, so 
$$I^2 = \frac{0^2 - \frac{\sin 2x}{2} + C}{0}$$

$$V^2 = x - \frac{\sin 2x}{2} + 1$$

$$V = \sqrt{x - \frac{\sin 2x}{2} + 1}$$

10 The velocity of a particle is given by 
$$v = 4 + x^2 \text{ m s}^{-1}$$
.

$$V = 4 + \chi^2$$

(a) Find the acceleration as a function of x.

(b) If initially x = -2 m, what is the displacement after  $\frac{\pi}{4}$  seconds?

a) 
$$\alpha = \frac{d^{2}x}{dt^{2}} = V \frac{dV}{dx} = (4 + x^{2}) \times \frac{d}{dx} (4 + x^{2}) = (4 + x^{2}) \times 2x = 2x^{3} + 8x$$

b)  $\frac{dx}{dt} = 4 + x^{2}$  so  $\frac{dx}{4 + x^{2}} = dt$ 
 $\therefore t = \int \frac{dx}{4 + x^{2}} = \frac{1}{2} t a a^{-1} (\frac{x}{2}) + C$ 

At  $t = 0$ ,  $x = -2$  so  $0 = \frac{1}{2} t a a^{-1} (\frac{-2}{2}) + C$ 

So  $C = -\frac{1}{2} \times t a a^{-1} (-1) = -\frac{1}{2} \times (-\frac{\pi}{4}) = \frac{\pi}{8}$ 

So  $(t - \frac{\pi}{8}) \times 2 = t a a^{-1} (\frac{x}{2})$   $\Rightarrow \frac{x}{2} = t a a a a x = 2 t a a a x = 2$ 

So  $x = 2 t a a a x = 2$ 

Section 1 - Page 2 of 8

14 If 
$$\frac{dx}{dt} = (3-x)^2$$
 and  $x = 2$  when  $t = 0$ , find: (a)  $x$  as a function of  $t$ .

(b)  $\frac{d^2x}{dt^2}$  as a function of  $x$ .

(c)  $\frac{dx}{dt} = (3-x)^2$  and  $\frac{dx}{(3-x)^2} = \frac{dx}{dx} = \frac{dx}{(3-x)^2} = \frac{dx}{dx} = -\frac{dx}{dx} = -\frac$ 

So at t=1

So x=e-3

 $1 = \ln |x+3|$ , i.e. x+3 = e

16 The acceleration of a body moving under gravitational attraction towards a planet varies inversely as the square of its distance from the centre of the planet. This can be written as  $\frac{d^2x}{dt^2} = -\frac{k}{x^2}$  where x is the distance from the centre of the planet and k is a constant. If the body starts from rest at a distance a from the centre of the planet, show that its speed at x (before it hits the planet) is given by  $\frac{dx}{dt} = \sqrt{\frac{2k(a-x)}{ax}}$ .

the planet, show that its speed at x (before it his the planet) is given by 
$$\frac{1}{dt} = \sqrt{\frac{1}{ax}}$$
.

$$a = -\frac{k}{x^2} = \frac{d^2x}{dt^2} \qquad \frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2}V^2\right) = -\frac{k}{x^2}$$

$$So \quad \frac{1}{2}V^2 = \int -\frac{k}{dx} \frac{dx}{x^2} = -k \int x^{-2} dx$$

$$\frac{1}{2}V^2 = -k \int \frac{x^{-2+1}}{x^2} + C = \frac{k}{x} + C$$

$$So \quad V^2 = \frac{2k}{x} + C$$

$$at \quad x = a, \quad V = 0 \quad , \quad so \quad 0 = \frac{2k}{a} + C \quad so \quad C = -\frac{2k}{a}$$

$$V^2 = \frac{2k}{x} - \frac{2k}{a} = 2k \left[\frac{a-x}{ax}\right]$$

$$V = \sqrt{\frac{2k(a-x)}{ax}}$$

$$\frac{dx}{dt} = \sqrt{\frac{2k(a-x)}{ax}}$$

### VELOCITY AND ACCELERATION AS FUNCTIONS OF $oldsymbol{x}$

- 17 A particle is moving in a straight line with its acceleration as a function of x given by  $\ddot{x} = -e^{-2x}$ . It is initially at the origin and travelling with a velocity of 1 metre per second.
  - (a) Show that  $\hat{x} = e^{-x}$ .
- (b) Hence show that  $x = \log_{10}(t+1)$ .

$$\ddot{\chi} = -e^{-2\kappa}$$

a) 
$$\frac{d^2x}{dt^2} = -e^{-2x}$$
, i.e.  $\frac{d}{dx} \left[ \frac{1}{2} V^2 \right] = -e^{-2x}$ 

$$m \frac{1}{2} V^2 = \int -e^{-2x} dx = -\left[\frac{e^{-2x}}{-2}\right] + C = \frac{e^{-2x}}{2} + C$$

$$S_0 V^2 = e^{-2x} + C$$

At 
$$x=0$$
,  $v=1$ , so  $1^2=e^{-2x0}+c$  so  $c=0$ 

$$V^{2} = e^{-2x} = (e^{-x})^{2}$$

$$\therefore \quad \dot{x} = e^{-x}$$

$$^{2}=e^{-2x0}+c$$

No 
$$V = e^{-x}$$
 (as  $V$  has to be positive)

b) 
$$\dot{x} = \frac{dx}{dt} = e^{-x}$$
,  $\frac{dx}{e^{-x}} = dt$  or  $e^{x}dx = dt$ 

$$\int e^{x} dx = t + C$$
 so  $e^{x} = t + C$ 

At 
$$t=0$$
,  $\kappa=0$ , so  $e^{\circ}=0+C$  so  $C=1$ 

- 18 A particle is moving so that  $\ddot{x} = 32x^3 + 48x^2 + 16x$ . Initially x = -2 and the velocity v is -8.
  - (a) Show that  $v^2 = 16x^2(1+x)^2$ . (b) Hence, or otherwise, show that  $-4t = \int \frac{1}{x(1+x)} dx$ .
  - (c) It can be shown that for some constant C,  $\log_e \left(1 + \frac{1}{x}\right) = 4t + C$ . Using this equation and the initial conditions, find x as a function of t.

a) 
$$\ddot{x} = 32x^3 + 48x^2 + 16x$$
  $\ddot{x} = \frac{d}{dx}(\frac{1}{2}V^2)$ 

$$\int \frac{d}{dx} \left( \frac{1}{2} v^2 \right) = 32x^3 + 48x^2 + 16x$$

$$\Rightarrow \frac{1}{2} v^2 = \frac{32x^4}{4} + \frac{48x^3}{3} + \frac{16x^2}{2} + C$$

$$S_0 V^2 = 16 x^4 + 32 x^3 + 16 x^2 + C$$

At 
$$x = -2$$
,  $V = -8$ , so  $(-8)^2 = 16 \times (-2)^4 + 32 \times (-2)^3 + 16 \times (-2)^2 + C$   
So  $V^2 = 16 \times 4 + 32 \times 3 + 16 \times 2$ 

$$V^{2} = |6 \chi^{2} \left[ \chi^{2} + 2\chi + 1 \right] = |6 \chi^{2} \left( \chi + 1 \right)^{2}$$

b) So 
$$V = \pm 4x(x+1)$$
 but at  $x = -2$ ,  $V = -8$ 

so 
$$V = -4x(x+1)$$
 but  $V = \frac{dx}{dt}$  so  $\frac{dx}{dt} = -4x(x+1)$ 

or 
$$\frac{dx}{4x(1+x)} = dt$$
 :  $-4dt = \frac{dx}{x(x-1)}$  :  $-4t = \frac{dx}{x(x+1)}$ 

9) 
$$\exists C \mid \ln\left(1+\frac{1}{\chi}\right) = 4t + C$$

At 
$$t = 0$$
,  $x = -2$  so  $\ln(1 - \frac{1}{2}) = 4 \times 0 + C$   
so  $C = \ln(\frac{1}{2}) = -\ln 2$ 

So 
$$4t - \ln 2 = \ln \left( 1 + \frac{1}{x} \right)$$

$$|+ \frac{1}{x} = e^{4t - \ln 2}$$

$$= 0 \quad \frac{1}{x} = e^{4t - \ln 2} - 1 = e^{4t} e^{-\ln 2} - 1$$

$$\therefore \frac{1}{x} = \frac{e^{4t} - 1}{2} = \frac{e^{4t} - 2}{2}$$

so 
$$x = \frac{2}{e^{4E}-2}$$

$$\therefore \frac{1}{x} = \frac{e^{4t} - 1}{2} = \frac{e^{4t} - 2}{2}$$

- **20** A body falls from rest so that its velocity  $\nu$  metres per second after t seconds is  $\nu = 80(1 e^{-0.4t})$ .
  - (a) Show that the acceleration is proportional to (80 v).
  - (b) Calculate the distance fallen in the first five seconds.

(e) Calculate the distance fallen when 
$$v = 60$$
.

a)  $V = \frac{dx}{dt} = 80 (1 - e^{-0.4t})$ ; differentiating both sides, veggy

$$\frac{dV}{dt} = \frac{d}{dt} \left[ 80 (1 - e^{-0.4t}) \right] = -80 \times (-0.4) e^{-0.4t}$$

So  $\frac{dV}{dt} = 0 = 32 e^{-0.4t}$ 

But  $\frac{dV}{dt} = -1 = -e^{-0.4t}$  so  $e^{-0.4t} = 1 - \frac{dV}{80}$ 

and so  $a = 32 \left[ 1 - \frac{dV}{80} \right] = \frac{32}{80} \left[ 80 - V \right]$  indeed, a in proportional to  $(80 - V)$ 

b)  $\frac{dx}{dt} = 80 (1 - e^{-0.4t})$  so  $\frac{dx}{dt} = 80 (1 - e^{-0.4t}) dt$ 

So  $x = 80t - 80 \frac{e^{-0.4t}}{(-0.4)} = 80t + 200 e^{-0.4t} + C$ 

at  $t = 0$ ,  $x = 0$ , so  $0 = 80 \times 0 + 200 e^{-0.4t} + C$ 
 $x = 80t + 200 e^{-0.4t} - 200$ 

At  $t = 5$   $x(5) = 80 \times 5 + 200 e^{-0.4x5} - 200 = 227 \text{ m}$ 

c) When  $\frac{dx}{dt} = 60 = 80 (1 - e^{-0.4t})$  so  $1 - e^{-0.4t} = \frac{3}{4} e^{-0.4t}$ 
 $\frac{dx}{dt} = \frac{1}{4} e^{-0.4t} + \frac{1}{4} e^{-0.4t} + \frac{1}{4} e^{-0.4t} = \frac{3}{4} e^{-0.4t}$ 
 $\frac{dx}{dt} = 80 \times 2.5 \ln 4 + 200 \times 1 - 200 = 200 \ln 4 - 150$ 

Section 1 - Page 7 of 8

 $\alpha_1 \simeq 127 \,\mathrm{m}$ 

- 21 A particle is brought to top speed by an acceleration that varies linearly with the distance travelled, i.e.  $\ddot{x} = kx + C$  where k and C are constants. It starts from rest with an acceleration of  $3 \text{ m s}^{-2}$  and reaches top speed in a distance of 160 metres. Find:
  - (a) the top speed (b) the speed when the particle has moved 80 metres.

g) 
$$\ddot{x} = kx + C$$
 so  $\frac{1}{2}V^2 = kx + C$  so  $\frac{1}{2}V^2 = \int (kx + C) dx$   
So  $\frac{1}{2}V^2 = k \int x dx + C \int dx = \frac{kx^2}{2} + Cx + K$   
So  $V^2 = kx^2 + 2Cx + 2K$   
At  $x = 0$ ,  $\ddot{x} = 3$  so  $C = 3$ , i.e.  $V^2 = kx^2 + 6x + 2K$   
At  $x = 0$ ,  $V = 0$  so  $0^2 = k \times 0^2 + 6 \times 0 + 2K$  so  $K = 0$   
 $V^2 = kx^2 + 6x$   
 $\ddot{x} = 0$  when  $x = 160$  so  $k \times 160 + 3 = 0$  so  $k = -\frac{3}{160}$   
So  $V^2 = \left(-\frac{3}{160}\right)x^2 + 6x$  so  $V = \sqrt{6x + \left(-\frac{3}{160}\right)x^2}$   
At  $x = 160$ ,  $V = \sqrt{6x \cdot 160 + \left(-\frac{3}{160}\right)x \cdot 160^2} = \sqrt{480} = 4\sqrt{30}$  m/s which is the top speed.