VELOCITY AND ACCELERATION AS FUNCTIONS OF x

1 A particle moves in a straight line so that at time 1 its displacement from a fixed origin is x and its velocity is v.
If its acceleration is given by ¥ =4+x and v=1 when x=0, find vwhen x = 1.
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3 Attime ¢, the displacement of a particle moving in a straight line is x. If the acceleration is given by
dls ,
dr’
if any, does the particle come to rest?
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=3=4x and the particle starts from rest at x = 1, find its velocity at any position. At what other point,
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VELOCITY AND ACCELERATION AS FUNCTIONS OF x

3
4—-’21:-= sin® x. Find —d-)f given

7 A particle moves in a straight line and its acceleration at any time is given by 0 .
that %‘f—:l when x=0.
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10 The velocity of a particle is given by v=4 + x’ms™".
(a) Find the acceleration as a function of x.
(b) Ifinitially x =~2m, what is the displacement after % seconds?
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VELOCITY AND ACCELERATION AS FUNCTIONS OF x

14 If %=(3-x )’ and x =2 when 1 =0, find: (@) xasafunctionofr (b) % as a function of x.
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LQ 15 A particle moves in a straight line. At time ¢ its displacement from a fixed origin is x. If x=x+3: X‘, =L +3
(@) express X in terms of x (b) find xwhent= lglvm that x==2 when t=0.
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16 The acceleration of a body moving under gravitational attraction towards a planet varies inversely as the

4

2 e
square of its distance from the centre of the planet. This can be written as ‘ji f = _il- where x is the distance

1 X
from the centre of the planet and k is a constant. If the body starts from rest at a distance a from the centre of
dx _ [2k(a=x)

the planet, show that its speed at x (before it hits the planet) is given by 5= &
(@
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VELOCITY AND ACCELERATION AS FUNCTIONS OF x

17 A particle is moving in a straight line with its acceleration as a function of x given by X =—¢™*_ It is initially at
the origin and travelling with a velocity of 1 metre per second. '
{a) Show that x=e¢7". {b) Hence show that x=log (1 +1).
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VELOCITY AND ACCELERATION AS FUNCTIONS OF x
18 A particle is moving so that ¥ =32x + 48x" +16x. Initially x = -2 and the velocity v is =8.
(@) Show that v’ = 16x7(1 + x)°. {b) Hence, or otherwise, show that —4f = I -Rll-l»—x;dx'

{c) It can be shown that for some constant C, log,(l +%—)= 41+ C. Using this equation and the initial

conditions, find x as a function of £.
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VELGCITY AND ACCELERATION AS FUNCTIONS OF x

20 A body falls from rest so that its velocity v metres per second after ¢ seconds is v = 80(1 — "),

(@) Show that the acceleration is proportional to (80 - v).
{b) Calculate the distance fallen in the first five seconds.
(c) Calculate the distance fallen when v=60.
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- VELOCITY AND ACCELERATION AS FUNCTIONS OF x

21 A particle is brought to top speed by an acceleration that varies linearly with the distance travelled, i.e.
¥ = kx +C where k and C are constants. It starts from rest with an acceleration of 3ms™ and reaches top speed
in a distance of 160 metres. Find:

(@ thetopspeed (D) thespeed when the particle has moved 80 metres.
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