- 1 A camera at ground level is 400 metres away from a hot air balloon just prior to the balloon lifting off. The balloon lifts off and the camera records the balloon rising into the sky at a constant rate of 10 metres per second.
 - (a) If θ is the angle of elevation of the balloon, express the height h of the balloon in terms of this angle.
 - (b) How fast is the angle of elevation θ radians changing when the balloon is 300 m above the ground?

a)
$$h = 10t$$
 $\tan \theta = \frac{h}{400} = \frac{10t}{400} = \frac{t}{40}$
b) we need $\frac{d\theta}{dt}$ when $h = 300 \text{ m}$

$$\tan \theta = \frac{t}{40} : \theta = \tan^{-1}\left(\frac{t}{40}\right)$$

$$\frac{d\theta}{dt} = \frac{1/40}{1 + \left(\frac{t}{40}\right)^2}$$
 But $t = \frac{h}{10}$ so $t = 30$ when $t = 30$ 0

10 ma-1

: when
$$k = 300 \text{ m}$$
 $\frac{d\theta}{dt} = \frac{1/40}{1 + \left(\frac{30}{40}\right)^2} = \frac{2}{12.5} \text{ rad s}^{-1}$

3 The gradient of the tangent to a curve at any point (x, y) is $\frac{x}{x+1}$, x > -1. If the curve passes through the point (1, 1), find the equation of the curve.

$$\frac{dy}{dx} = \frac{x}{x+1} \qquad \text{so } dy = \frac{x}{x+1} dx \qquad \text{so } dy = \int \frac{x}{x+1} dx$$

$$y = \int \frac{x+1-1}{x+1} dx = \int 1 - \frac{1}{x+1} dx = x - \ln|x+1| + C$$
which is the general solution of the D.E.

At
$$x=1$$
, $y=1$ so $1=1-\ln |2|+c$ so $C=\ln 2$

$$y = x - \ln |x+1| + \ln 2 = x + \ln \frac{2}{|x+1|}$$

- 7 A species of tuna is declining so that T, the number of tuna at a time t years from now, satisfies the differential equation $\frac{dT}{dt} = -0.1T$.
 - (a) Write the general solution to this differential equation, where T(0) = A > 0 is the initial population.
 - (b) Find the time it will take for the numbers to fall to one-quarter of their present value.

a)
$$\frac{dT}{dt} = -0.1T$$
 so $\frac{dT}{dt} = -0.1dt$ so $\ln |T| = -0.1t + C$
 $T = A e^{-0.1t}$ general solution of the d.e.

b) When $T = A/4$ then $\frac{A}{4} = A e^{-0.1t} \Rightarrow e^{-0.1t} = 1/4$

so $\ln \left(e^{-0.1t} \right) = \ln \left(1/4 \right)$ $s \Rightarrow -0.1t = -\ln 4$

so $t = \frac{\ln 4}{0.1} = 10 \ln 4 \approx 13.9$ years

8 Consider the initial value problem $\frac{dy}{dx} = 2x(1+y^2)$, y(0) = 1. Find the exact solution to the differential equation.

So
$$\frac{dy}{1+y^2} = 2x dx$$
 so $\int \frac{dy}{1+y^2} = \int 2x dx$
So $\tan^{-1}y = x^2 + C$ so $y = \tan(x^2 + C)$ general solution of the $x = 0$, $y(0) = 1$ so $1 = \tan C$ so $C = T/4$
 $y = \tan(x^2 + T/4)$ is the particular solution for which $y(0) = 1$

13 What is the slope field of $y' = \frac{x^2}{x^2}$?

when x=y, or along y=-x, the gradient is 1 so either A or D

- 16 Consider the differential equation $\frac{dy}{dx} = x 2y$, for which the solution is g(x). Which of the following statements about the particular solution that contains the point (0, -1) is true at x = 0?
 - the graph is increasing and concave up
- the graph is increasing and concave down В
- the graph is decreasing and concave up
- D the graph is decreasing and concave down

$$\frac{dy}{dx} = x - 2y.$$

at
$$(0, -1)$$

at
$$(0,-1)$$
 $\frac{dy}{dx} = 0 - 2 \times (-1) = 2$ which is

.: the graph is increasing at that point (regules A or B) positive.

To find the concarity, we need to calculate $\frac{d^2y}{dx^2}$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d}{dx} \left[x - 2y \right] = 1 - 2 \frac{dy}{dx} = 1 - 2 \left(x - 2y \right) = 4y - 2x + 1$$

So at (0,-1) $\frac{d^2y}{dx^2} = 4x(-1)-2x0+1 = -3$ which is regarive $\frac{d^2y}{dx^2}$: The graph is cancare down at that point Section 7-Page 3 of 10

Kogaræ B

Consider the differential equation $\frac{dy}{dx} = y \sin x$, for which the solution is y = f(x). Let f(0) = 1.

17 Which of the following statements about the graph of f(x) are true?

- (i) The slope of f(x) at the point $(\frac{\pi}{2}, 1)$ is 1.
- (ii) f(x) has a horizontal tangent where x = 0.
- (iii) f(x) has a nonzonal tangent where y = 0.

 B ii only C i and ii only D ii and iii only

18 The particular solution is:

- $A \quad v = e^{1 \cos x}$
- **B** $y = e^{\cos x 1}$ **C** $y = e^{-\sin x}$

 $\frac{17}{17}$ i) at $\left(\frac{\pi}{2}, 1\right)$ $\frac{dy}{dx} = 1 \times \sin \pi = 1$ so true

ii) when x = 0, $\frac{dy}{dx} = y \times \sin 0 = 0$ so true

iii) when y = 0 $\frac{dy}{dx} = 0 \times \sin x = 0$ so hoizental tangent (NOT vertical).

So i) and ii) are true, not iii) Response []

18) $\frac{dy}{dx} = y \sin x$ $\sin x \sin x dx$ so $\int \frac{dy}{y} = \int \sin x dx$ so $\ln |y| = -\cos x + C$

no /y/= A e-cox

When x = 0, f(0) = 1 so $|y| = 1 = Ae^{-\cos 0} = Ae^{-1}$

MA=e

So the particular solution is $y = e^{-\cos x} = e^{1-\cos x}$

Regarse A

19 When added to water, 5 grams of a substance dissolves at a rate equal to 10% of the amount of undissolved chemical per hour. If x is the number of grams of undissolved chemical after t hours, then x satisfies the differential equation:

A
$$\frac{dx}{dt} = -\frac{1}{10}x$$

$$\mathbf{B} \quad \frac{dx}{dt} = -\frac{1}{5}x$$

B
$$\frac{dx}{dt} = -\frac{1}{5}x$$
 C $\frac{dx}{dt} = \frac{1}{5}(10-x)$ D $\frac{dx}{dt} = \frac{1}{10}(5-x)$

$$D \quad \frac{dx}{dt} = \frac{1}{10}(5-x)$$

$$\frac{dx}{dt} = -\frac{1}{10}x$$

21 A quantity of sugar is dissolved in a tank containing 100 litres of pure water. At time t = 0 minutes, pure water is poured into the tank at a rate of 4 litres per minute. The tank is kept well stirred at all times. At the same time, the sugar solution is drained from a tap at the bottom of the tank at a rate of 6 litres per minute. A differential equation for the mass m grams of sugar in the tank is:

A
$$\frac{dm}{dt} = -6m$$

$$B \frac{dm}{dt} = 4 - \frac{3m}{50}$$

$$\mathsf{A} \quad \frac{dm}{dt} = -6m \qquad \qquad \mathsf{B} \quad \frac{dm}{dt} = 4 - \frac{3m}{50} \qquad \mathsf{C} \quad \frac{dm}{dt} = -\frac{3m}{50 - t} \qquad \qquad \mathsf{D} \quad \frac{dm}{dt} = 4 - \frac{3m}{50 - t}$$

$$D \quad \frac{dm}{dt} = 4 - \frac{3m}{50 - t}$$

At t=0 m in water.

100/ water.

As more water is flowing out of the tank thou what comes in,

the tank will be empty after 100 = 50 min.

So fa t < 50,
$$\frac{dm}{dt} = rate of inflow - rate of outflow = 0$$

$$\frac{dM}{dt} = -6 \times \frac{M}{V} = -6 \times \frac{M}{100 - (6-4)t} = \frac{-6M}{100 - 2t} = \frac{-3M}{50 - t}$$

Section 7 - Page 5 of 10

22 According to Fourier's law of heat conduction, the rate of heat transfer $\frac{dQ}{dt}$ through an ice sheet in Antarctica is given by the differential equation $\frac{dQ}{dt} = \frac{k(T_w - T_a)}{h}$, where k is the thermal conductivity of the ice, h is the thickness of the ice sheet and T_w and T_a are the temperatures at the ice/water boundary and the ice/air boundary respectively.

As the water loses Q joules of heat through the ice sheet, the rate of increase in ice thickness h is given by $\frac{dh}{dQ} = \frac{1}{L\rho}$, where L is the latent heat of sea water (in other words, the amount of heat loss required to freeze 1 kilogram of it) and ρ is the density of the ice.

- (a) Find the rate of increase of the ice sheet thickness $\frac{dh}{dt}$
- **(b)** If $h(0) = h_0$, find h(t), assuming that $\frac{k(T_w T_a)}{L\rho}$ is a positive constant.

a)
$$\frac{dQ}{dt} = \frac{R(Tw - Ta)}{R}$$
 and $\frac{dh}{dQ} = \frac{1}{L\rho}$

So $\frac{dh}{dt} = \frac{dh}{dQ} \times \frac{dQ}{dt} = \frac{1}{L\rho} \times \frac{R(Tw - Ta)}{R} = \frac{R(Tw - Ta)}{L\rho h}$

b) From the differential equation (d.e.) $\frac{dh}{dQ} = \frac{R(Tw - Ta)}{L\rho h} = \frac{R(Tw - Ta$

- 28 Bob's credit card bill B is initially \$15000 and he pays 18% interest on this debt per year, compounded continuously. He decides to pay it off by transferring money from his savings account continuously at the rate of \$300 per month.
 - (a) Find and solve a differential equation to model the credit card balance B after t years.
 - (b) How much time will it take to pay off the credit card bill (to the nearest day)?
 - (c) What is the sum total of Bob's repayments?

Assume Bob has \$40 000 in a savings account that accumulates interest at an annual rate of 6%, also compounded continuously.

- (d) Find and solve a differential equation to model the balance S of Bob's savings account.
- (e) How much money will Bob have in his savings account when the debt is finally paid off (assuming no other transactions)?

a)
$$\frac{db}{dt} = 0.18 \, B - 12 \times 300 = 0.18 \, B - 3600 = 0.18 \left(B - 20,000 \right)$$

b) $\frac{dB}{B} = 0.18 \, B - 12 \times 300 = 0.18 \, B - 3600 = 0.18 \left(B - 20,000 \right)$

b) $\frac{dB}{B} = 0.18 \, B + 0.18 \, B = 20,000 + A = 90.000 \, A = 5000 \, A = 50000 \,$

- An abandoned open-cut mine just outside a large city has been purchased as a landfill for solid waste by a city council. When purchased, the open-cut mine had a volume of 1 million cubic metres. At the beginning of 2015, the landfill already had 100 000 cubic metres of solid waste. The volume of solid waste W in the landfill (measured in units of 100 000 cubic metres) t years after the beginning of 2015 is modelled by the solution of the differential equation $\frac{dW}{dt} = \frac{1}{10}(10 W)$, W(0) = 1.
 - (a) Find the volume of solid waste in the landfill t years after 2015.
 - (b) Hence determine the volume of solid waste in the landfill at the beginning of 2035. (Express your answer in cubic metres, correct to the nearest cubic metre.)

a)
$$\frac{dW}{dt} = \frac{1}{10}(10 - W)$$
 and $W(0) = 1$

$$\frac{dW}{10 - W} = \frac{dt}{10} \qquad \int_{-10 + W} \frac{dW}{10} = \frac{-1}{10}\int_{-10 + W} dt \quad \text{so } \ln|W - 10| = \frac{-1}{10}t + C$$

$$W - 10 = A e^{-t/10} \qquad \text{But} \quad W(0) = 1 \quad \text{so } 1 - 10 = A$$

$$W = 10 - 9 e^{-t/10}$$
b) At $t = 20$ (i.e in 2035)
$$W = 10 - 9 e^{-20/10} = 10 - 9 e^{-2} = 10 - \frac{9}{e^2} \approx 8.78198$$
So Value of adial wakts in $2035 = 878,198$ m³

- 30 The population P(t) of penguins on an island in the Southern Ocean t years after the beginning of 2015 grows at a rate directly proportional to 1000 P(t), where the constant of proportionality is k.
 - (a) If the population at the beginning of 2015 is 200, express the penguin population *t* years after the beginning of 2015 in terms of *t* and *k*.
 - **(b)** If the population after 2 years is 300, find *k*.
 - (c) Hence determine the long-term population of penguins on the island.

a)
$$\frac{dP}{dt} = k(1000 - P)$$
 so $\frac{dP}{P - 1000} = -kdt$

$$\int \frac{dP}{P - 1000} = \int -kdt$$
so $\ln |P - 1000| = -kt + C$

so $|P - 1000| = P - 1000$ few $P - 1000 = A e^{-kt}$ so $P = 1000 + A e^{-kt}$

if $|P - 1000| = |P - 1000|$ few $P - 1000 = A e^{-kt}$ so $P = 1000 - A e^{-kt}$

if $|P - 1000| = |P - 1000|$ few $P - 1000 = A e^{-kt}$ so $P = 1000 - A e^{-kt}$

if $|P - 1000| = 1000 - P$ few $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = 1000 - P$ few $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = 1000 - A e^{-kt}$

if $|P - 1000| = P - 1000$ few $|P - 1000| = A e^{-kt}$

if $|P - 1000| = P - 1000 - A e^{-kt}$

if $|P - 1000| = P - 1000 - A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1000| = A e^{-kt}$

if $|P - 1000| = A e^{-kt}$ so $|P - 1$

- While on an unauthorised trip to the local fast food restaurant during their study period, a pair of Year 12 students are convinced that they have just seen the Prime Minister buying a hamburger. On returning to the school, their amazing discovery spreads throughout the school community at the rate $\frac{dp}{dt} = \frac{1}{10}p(1-p)$, where p is the proportion of the school community that has already heard the rumour, t minutes after their return to school.
 - (a) What proportion of the school community has heard the rumour when it is spreading most rapidly? By the beginning of the afternoon period, 20% of the school community had already heard the rumour.
 - (b) Find p(t), at time t minutes since the beginning of the afternoon period, given $\frac{1}{p(1-p)} = \frac{1}{p} \frac{1}{p-1}$.
 - (c) At what time (correct to the nearest minute) is the rumour spreading most rapidly?

.

a)
$$dp = \frac{1}{10} \rho(1-p)$$
 dp is the greatest when $\rho(1-p)$ is the greatest $\rho(1-p)$ is the further has a maximum (as it's a concave down parabola)

$$\begin{cases}
(p) = \rho(1-p) = \rho - \rho^2 & \text{this further has a maximum (as it's a concave down parabola)} \\
(p) = 1 - 2p & \text{the maximum is when } \rho(p) = 0, i.e. $\rho = \frac{1}{2} \\
\text{So the number spreads must rapidly when } \rho = \frac{1}{2} \\
\text{(i.e. half of the formalism)}
\end{cases}$

$$\frac{dp}{p(1-p)} = \frac{dt}{10} \quad \text{so} \int \left[\frac{1}{p} - \frac{1}{p-1}\right] dp = \int \frac{dt}{10} \\
\text{(i.e. half of the formalism)}$$

$$\frac{dp}{p(1-p)} = \frac{1}{10} \int dt \quad \Rightarrow \text{ onlip} - \text{ onlip} - \text{ onlip} - \text{ onlip} + \text{ onlip}$$$$

Section 7 - Page 10 of 10

t N 14 minutes