RESISTANCE PROPORTIONAL TO SQUARE OF VELOCITY

In section 6.6 you considered projectile motion with resistance proportional to the velocity. In this section you will
extend this to consider projectile motion with resistance proportional to the square of the velocity.

For air resistance that is proportional to the square of the velocity, the resistance can be represented as a vector
that is opposite in direction to the velocity vector, with a magnitude equal to the magnitude of the velocity vector
squared, multiplied by a constant k.

Using this definition to derive the parametric equations of the resistance in the two-dimensional case:

\J vi+v?

The horizontal and vertical components of the air resistance are given by —kv,\Jv,” +v,” and —kv,,,’v,,2 +v,’,
respectively. These components are not independent of each other, which means there is no straightforward way
to find the position vectors by integration. Instead, projectile motion can be examined by using a mathematical
model where the components of the resistance are simplified and approximated to be simply proportional to the
velocity vector components squared. That is, -kv,‘,v,2 +v,? is approximated as —k(v, )2 and =kv,Jv.> +v,7 is

approximated as -k( v,) .

A mathematical model for air resistance with the square of the velocity

A particle of mass m is launched at time t =0, from ground level on a flat plane, at an angle of 6 to the horizontal
with an initial velocity of u ms™. In addition to gravity, there is an air resistance force that acts in the opposite
direction to the instantaneous direction of motion. The magnitude of this resistance force is directly proportional to
the square of its instantaneous speed.

Use the standard Cartesian coordinates with the x-axis horizontal and the y-axis vertical.

Let the components of the acceleration be X and y, the components of the velocity be x and y, and the components
of the displacement be x and y.

Initially, x=0, x =u, =ucosf, y=0, y =u, = usin6.

Now the model is mx = —=mk(x)’ and mj = —mg — mk(y)’, where k is the constant of proportionality of the
resistance.

Dividing by m reduces these equations to: ¥ = —k(x)’, j =—g —k(y)".

Consider the horizontal motion and let v, = X so that ¥ = Tl": T; =—kv,?
dve Kt
) vy dV !
Integrate both sides: r==k| dt
uy Vo 0
Vx
T -
vx
uyx
—_l + L —. —k[
vl ux
1 _ 1+ku.t
VX “x
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RESISTANCE PROPORTIONAL TO SQUARE OF VELOCITY

u

X

v‘=1+ku,t
. dx u
Nowy, =x: == L
e ¥ 14 ku,t
toode

Integrate with respecttot: x=u, | ———
Br P * ol+kuxl

x= %[log,(l + kuxl)];

x =llog,(l+ku,1)

k
Consider the vertical motion and let v, = y so that j = d;t’ —_
dv
Tt =~8—k,Y
d
_V;z = =dt
g+ k(vy )
vy dVy '
ides: ——— == dt
Integrate both sides: Lr g+ k(v, 5 Io
l vy dV __ !
k uy g - -[0 d‘
PRal 1
. T
1 1k an| 22 ==t
k )

el ()
tan = lan ==t

ke UV
e ) e )

£

_py— tanA-tanB ‘/_ -1 ‘/,:VI
Now tan(A B)__l+tanAtanB and A= [7;—} B=tan (Vg-—

MW,[ )
%)

J'u-J'v

tan(kgt) T W
tan(Jkgt)(g + VEu, VEv, ) = Jg (Y, - JFv,)
gtan(JEt)+kvyuylan(\llqt)=‘/g_kuy—‘/g_kv,
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RESISTANCE PROPORTIONAL TO SQUARE OF VELOCITY
Jﬁv,+kvyu, (an(‘/Gt)=\/_ku —gmn(Jk_I)

) J_u - gtan(Jkgt)
" Jek +ku, tan( Jkgt)

P Y )
dr \[g_k+kusm0mn(\[_kr \[_k+kusmﬂtan(\f_l)

ausin@ - g tan(at)
Leta = \f_soa _gkorg__Thus Ia+kusin9tan(al)d‘

Nowv,=yan

Rewriting this integrand in terms of sin(at) and cos(at):

_gsin(at)
J‘ Gusing cos(at) dt
r= kusmOsm(at)
cos(at)
a Iausinﬂcos(ar)—gsin(at)
~ J acos(at) + kusin@sin(at)

dt

Now differentiate the denominator:

%(a cos(at)+ kusin@sin(at)) = —a’ sin(at) + eku sin @ cos(at)

al
= k( ausin@cos(at) - Tsin(m))

= k(ausinBcos(at) - gsin(at))

Thus you can write y = {f((t))d‘ where f(t) = acos(at) + kusin@sin(at ), so that y = log, |f(t)| +C.

ausinecos(at)-gsm(at)

acos(at)+kusin05in(al)d'

Hence: y = I

_ljk(ausinecos(at)—gsin(at))
~ kJ acos(at)+ kusinBsin(at)

=%log, |ex cos(axt) + kusin@sin(at)| + C
Rewriting this with @ = \/g_k now gives y = %log,'Jg_kcos(\/g_kl)+ kusinOsin(\/g_kl)l+C.
Whent=0,y=0,s00= %log,Ng_kcoso+kusinOsin0|+Cand soC=—%log¢|\/g—k|.

Hence: y = %log( \/g_kcos(\/g_kt)+kusinesin(\/g_kl)| - %log,wg_k|

log, cos(\fg_kt)+ kusinejg‘(\fg_kr)

log,cos(\[_t) \/:usmesm(\/_t)

x|

e
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RESISTANCE PROPORTIONAL TO SQUARE OF VELOCITY
Thus the parametric equations of the path are:
x= %log,(l +(kucosB)t) and y = %log, cos(\/g_kr)+ \/gusines'm(\[g_kt)
To obtain y as a function of x, first solve x for t:
kx =log, (1+ (kucosO)t)
=14+ (kucos@)

(kucos@)t = & =i

— ™ =1
kucos@
kx kx
_1 Jek(e-1)) [ Jek(e-1) ) |
Soy-zlog, COS[W + Eusmesm ~Tucosd is the equation of the path.
Example 31

A projectile is fired from the origin O with an initial velocity u ms™ at an angle 0 to the horizontal in a medium
whose resistance is proportional to the square of the velocity. Use g=10ms™.

The parametric equations of the motion are: ¥ = —k(x )Y, ¥==10-k( y)’
wcos® . V10kusin®-10tan(10kt)

*= T+ kucosor’ 7' = 10k + kusin 8 tan( 10kr)

cos( 10kt ) + \/%usinOSin( 10k:)

The projectile is fired at an angle of 60° to the horizontal with an initial velocity of 103 ms™. k=0.4.

=1 1
x= Ilog,(l +kucosft), y = 7 log

(@) Find when the projectile reaches its greatest height (correct to two decimal places).
(b) Find the greatest height (correct to two decimal places).

(c) Find when the projectile hits the ground (correct to two decimal places).

(d) Graph the path of the projectile.
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RESISTANCE PROPORTIONAL TO SQUARE OF VELOCITY

Solution

V10kusin®-10tan(10kt )
(@) Greatest height when y=0: y =
Jlok+kusmoum( lokt)

ﬁxloﬁx%—mmzr

B Solve: = —

J4_+o.4xloﬁxﬁm2, ve: 5(3-tan2t)=0

: tan2t=3
_30-10tan2t B
© 2+6tan2t 2t=1249
=3(3—tan2t) t=062s
© 1+3tan2t Greatest height is at 0.62 seconds.
(b) t=0.62:

y =D log, |cos v x0.62) + J% X 103/3 x %s'm(\/z xo.62)| = 25l0g, |cos1.24 + 3sin1.24| = 2.878 = 2.88m

(c) y=0: 2.Slog,|coszr +3sin2t| =0
cos2t +3sin2t = -1
\/ﬁ(ishﬂt +Lc0521)= 1

J10 J10

sin(2!+a)=ﬁ where tana =

3| -

2t +0.3218=0.3218, 2.82
2t = 2.4982
F=1258

(d) The dotted line uses the parametric equations x = 2.5log, (l +23t ). y=25log, |cos 2t +3sin 2:|

(Z(eo.u _1) . 2(eo.u _1)
COSLT]+3M[T].

or the Cartesian equation of the path y = 2.5log,

The solid line represents no resistance, the

y

dashed line represents resistance proportional ' |

to the velocity and the dotted line represents

resistance proportional to the square of the ol |

velocity.

The solid graph uses the parametric equations  © | A

2 ¥ .

x=5s/§t,y=15t-5120ry=w/§x-—‘;—5. 6 \

The dashed graph uses the parametric equations '
x=125J3(1-¢*") or y=100(1-¢"*)=-25t. * T

-
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RESISTANCE PROPORTIONAL TO SQUARE OF VELOCITY

Summary of equations for projectile motion at an angle 6 to the horizontal

A particle is projected from the ground with an initial velocity u at an angle 6 to the horizontal where u, = ucos®6,
u, = usin@. If projected from above the ground, then this initial height of projection needs to be added to the equation
for y. k is the constant of proportionality for any resistance.

No resistance

=0 )'i:—g
X =ucosf y=usinf - gt
X =ucos@t y=usin0!-%gll

Resistance proportional to the velocity

& =—kx y=-g-ky
% =ucosfe™™ j'=%((g+kusin0)e"“—g)

0 ] (g +kusin®) ] gt
x=uc:s (l—e Iu) y= = (l—(:‘ h)-T

Resistance proportional to the square of the velocity—mathematical model

¥ =—k(x)? y==g-k(y)
oo o080 _'=‘/g_kusin9-10lan(‘/g_kl)
T+ kcosbr » 7 Jek + kusin@tan( Jgk1)

1 1
x=Ilog,(l+kucoset) y =7 log.

cos(‘/g_kl)+J§usinesin(Jg_kl)
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