1 Calculate the area of the region bounded by the line y = 2x and the parabola $y = x^2$.

3 The area of the region bounded by the line y = x + 2 and the parabola $y = x^2 - 4$ is given by: A $\int_{-2}^{3} (6 + x - x^2) dx$ B $\int_{-3}^{2} (6 + x - x^2) dx$ C $\int_{-2}^{3} (x^2 - x - 6) dx$ D $\int_{-3}^{2} (x^2 - x - 6) dx$

A
$$\int_{-2}^{3} (6 + x - x^2) dx$$

$$\mathsf{B} \quad \int_{-2}^{2} \left(6 + x - x^2 \right) dx$$

C
$$\int_{3}^{3} (x^2 - x - 6) dx$$

D
$$\int_{-3}^{2} (x^2 - x - 6) dx$$

4 Calculate the area bounded by $f(x) = x^2$, $g(x) = \frac{1}{x^2}$, x > 0, the x-axis and the line x = 3.

7 Find the area enclosed by the line y = 2x, the parabola $y = -x^2$ and the line x = 2.

- **9** Calculate the area of the region enclosed by the graphs of the parabola $y = 2x^2 5x 3$ and the line y = 3x - 3. Indicate whether each statement below is a correct or incorrect step in calculating this area.
 - (a) Intersection points: (0,-3) and (4,9) (b) Area = $\int_0^4 (8x-2x^2) dx$
- - (c) Area = $\int_{-3}^{9} (8x 2x^2) dx$
- (d) Area = $21\frac{1}{3}$ units²

- **13** A straight line through the origin cuts the parabola $y = 4x x^2$ at the point where x = 3.
 - (a) Find the equation of this line.
 - (b) Calculate the area of the region bounded by the parabola and the straight line.