A unit vector is a vector with a magnitude of one unit. To obtain a unit vector from a given vector, divide that vector by its own magnitude.

If vector \underline{a} has a magnitude of $|\underline{a}|$, then a unit vector in the direction of \underline{a} , denoted by $\underline{\hat{a}}$, can be found by dividing vector \underline{a} by its own magnitude $|\underline{a}|$. That is, $\underline{\hat{a}} = \frac{\underline{a}}{|\underline{a}|}$.

The unit vector in the direction of \underline{a} is denoted \hat{a} , where $\hat{a} = \frac{\underline{a}}{|\underline{a}|}$ and $|\hat{a}| = 1$.

Recall that a vector can be represented as an ordered pair (x, y) or as a column vector $\begin{pmatrix} x \\ y \end{pmatrix}$, where the first value represents the distance parallel to the x-axis and the second value the distance parallel to the y-axis.

This information can also be defined using the vectors \underline{i} and \underline{j} , where \underline{i} is a vector of magnitude one unit in the positive x-direction and \underline{j} is a vector of one unit magnitude in the positive y-direction. The vectors \underline{i} and \underline{j} are unit vectors.

For example, the vector \underline{a} defined by the coordinates (2, 5) or the column vector $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ can be written as $\underline{a} = 2\underline{i} + 5\underline{j}$.

The form $\underline{a} = x\underline{i} + y\underline{j}$ is called **component form** or \underline{i} , \underline{j} **form** of a vector. The vector \underline{a} may also be represented in column

vector form as $\begin{pmatrix} x \\ y \end{pmatrix}$

Example 10

Express the vector a in component form.

Solution

Vectors are drawn from the tail of the vector across and then up (or down) to meet the head of the original vector, labelled as $x\underline{i}$ and $y\underline{j}$.

Oiginal vector in terms of the components $x\underline{i} + y\underline{j}$: $\underline{a} = -3\underline{i} + 4\underline{j}$

Magnitude of a vector in component form

To find the magnitude in component form you can use Pythagoras' theorem, as the components form a right-angled triangle. For example,

if
$$a = 5i - 2j$$
:

$$\begin{vmatrix} a \end{vmatrix} = \sqrt{5^2 + (-2)^2}$$
$$= \sqrt{29}$$

When finding the magnitude of a vector, use only the positive square root value.

Resolving vectors into component form

If a vector \underline{a} of magnitude $|\underline{a}|$ makes an angle θ with the positive x-axis, then: $\underline{a} = |\underline{a}| \cos \theta \underline{i} + |\underline{a}| \sin \theta \underline{j}$.

The horizontal component of the vector \underline{a} is $|\underline{a}|\cos\theta\underline{i}$ and the vertical component is $|\underline{a}|\sin\theta\underline{j}$.

The process of specifying a vector of known magnitude and direction in component form is called **resolving the vector**.

Example 11

Resolve the vector \underline{a} into component form $\underline{a} = x\underline{i} + y\underline{j}$, given \underline{a} has a magnitude of 6 units and has a direction of 50° to the positive x-axis. Give answers correct to two decimal places.

Solution

$$|a| = 6$$
 and $\theta = 50^{\circ}$

If a vector \underline{a} of magnitude $|\underline{a}|$ makes an angle θ with the positive x-axis, then $\underline{a} = |\underline{a}| \cos \theta \underline{i} + |\underline{a}| \sin \theta \underline{j}$.

$$a = |a| \cos \theta i + |a| \sin \theta j$$

$$=6\cos(50^{\circ})i + 6\sin(50^{\circ})j$$

$$= 3.86i + 4.60j$$

Addition and subtraction of vectors in component form

Addition and subtraction of vectors can be done by adding or subtracting the i components and the j components.

For $\underline{a} = x_1 \underline{i} + y_1 \underline{j}$ and $\underline{b} = x_2 \underline{i} + y_2 \underline{j}$ then:

$$\begin{aligned}
\underline{a} + \underline{b} &= \left(x_1 \underline{i} + y_1 \underline{j} \right) + \left(x_2 \underline{i} + y_2 \underline{j} \right) \\
&= x_1 \underline{i} + x_2 \underline{i} + y_1 \underline{j} + y_2 \underline{j} \\
&= \left(x_1 + x_2 \right) \underline{i} + \left(y_1 + y_2 \right) \underline{j}
\end{aligned}$$

$$\underline{a} - \underline{b} = (x_1 \underline{i} + y_1 \underline{j}) - (x_2 \underline{i} + y_2 \underline{j})$$

= $(x_1 - x_2) \underline{i} + (y_1 - y_2) \underline{j}$

For $\underline{a} = x_1 \underline{i} + y_1 \underline{j}$ and $\underline{b} = x_2 \underline{i} + y_2 \underline{j}$.

$$\underline{a} + \underline{b} = (x_1 + x_2)\underline{i} + (y_1 + y_2)\underline{j}$$

$$\underline{a} - \underline{b} = (x_1 - x_2)\underline{i} + (y_1 - y_2)\underline{j}$$

In column vector notation, this can be written as $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ and $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}$ respectively.

Scalar multiplication of vectors in component form

$$k\underline{a} = k(x\underline{i} + y\underline{j})$$

$$= kx\underline{i} + ky\underline{j}$$
In column vector notation, this can be written as $k\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$.

If $a = x\underline{i} + y\underline{j}$, then $k\underline{a} = kx\underline{i} + ky\underline{j}$

Example 12

Given a = i - 5j and b = -3i + 2j, find: (a) a + b

- (b) b-a

Solution

(a) Sum of the vectors in component form:

$$\underline{a} + \underline{b} = (\underline{i} - 5\underline{j}) + (-3\underline{i} + 2\underline{j})$$

Group the coefficients of the components together and simplify: =(1-3)i+(-5+2)j

$$=-2i-3j$$

(b) Sum of the vectors in component form:

$$\underline{b} - \underline{a} = \left(-3\underline{i} + 2\underline{j}\right) - \left(\underline{i} - 5\underline{j}\right)$$

Group the coefficients of the components together and simplify: = (-3-1)i + (2-(-5))j

$$=-4i+7j$$

(c) Sum of the vectors in component form:

$$-4a + 7b = -4(i - 5j) + 7(-3i + 2j)$$
$$= -4i + 20j - 21i + 14j$$

Group the coefficients of the components together and simplify: = $(-4 - 21)\underline{i} + (20 + 14)\underline{j}$ =-25i+34j

Equality of vectors in component form

If $\underline{a} = x_1 \underline{i} + y_1 j$ and $\underline{b} = x_2 \underline{i} + y_2 j$, then $\underline{a} = \underline{b}$ if and only if $x_1 = x_2$ and $y_1 = y_2$.

Example 13

Find the values of m and n if 7i - 5j = (3m+1)i + (4n-9)j.

Solution

Equate coefficients of the vector components and solve the resulting equations:

$$i$$
 components: $7 = 3m + 1$

$$3m = 6$$

$$m = 2$$

j components: -5 = 4n - 9

$$4n = 4$$

$$n = 1$$

Relative position vectors

You have already looked at position vectors that represent the position of one point in relation to the origin. A relative position vector represents a point's position in relation to another point.

The position vector of B relative to A is given by \overrightarrow{AB} .

In the diagram shown $\overrightarrow{OA} = 3\underline{i} - 2\underline{j}$ and $\overrightarrow{OB} = -\underline{i} + 3\underline{j}$.

The position vector of B relative to A is \overrightarrow{AB} , where $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$.

Now, $\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= \left(-\underline{i} + 3\underline{j}\right) - \left(3\underline{i} - 2\underline{j}\right)$$

$$= -4\underline{i} + 5\underline{j}$$

Example 14

The position vector of point A on the Cartesian plane is $\overrightarrow{OA} = 12\underline{i} - 5\underline{j}$ and the position vector of point B is $\overrightarrow{OB} = -7\underline{i} + 6\underline{j}$. Find the position vector of A relative to B.

Solution

The position vector of A relative to B is \overrightarrow{BA} . Write the rule to find \overrightarrow{BA} : $\overrightarrow{BA} = \overrightarrow{BO} + \overrightarrow{OA}$

$$\therefore \overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB}$$

Substitute the components and simplify: $\overrightarrow{BA} = (12\underline{i} - 5\underline{j}) - (-7\underline{i} + 6\underline{j})$ = $19\underline{i} - 11\underline{j}$

Parallel vectors

Two vectors are parallel if they are scalar multiples of each other:

If b = ka, where k is a real number, then b is parallel to a.

For example, if $\underline{a} = \underline{i} - 3\underline{j}$ and $\underline{b} = 4\underline{i} - 12\underline{j}$, then $\underline{b} = 4(\underline{i} - 3\underline{j})$. $\therefore b = 4a$, so b is parallel to a.

Example 15

Consider the three vectors a = -2i + 3j, b = 8i - 5j and c = -8i + 12j. Which two vectors are parallel?

Solution

Look at the vectors to see if a scalar multiplier exists for any of them: c = -8i + 12j

$$=4\left(-2\underline{i}+3\underline{j}\right)$$
$$=4a$$

Vectors a and c are parallel.

Unit vectors in component form

Recall that a **unit vector** has a magnitude of 1 and $\hat{a} = \frac{a}{|a|}$.

Therefore, if $\underline{a} = x\underline{i} + y\underline{j}$, then $\hat{a} = \frac{1}{\sqrt{x^2 + y^2}} (x\underline{i} + y\underline{j})$.

It is usually better to express the unit vector with a rational denominator, so $\hat{a} = \frac{\sqrt{x^2 + y^2}}{x^2 + y^2} (x\underline{i} + y\underline{j})$.

A unit vector is a 'direction finder', in that it determines a vector's direction but not its magnitude.

If
$$\hat{a} = xi + yj$$
, then $\hat{a} = \frac{1}{\sqrt{x^2 + y^2}} \left(xi + yj \right)$ or $\hat{a} = \frac{\sqrt{x^2 + y^2}}{x^2 + y^2} \left(xi + yj \right)$.

Example 16

Find the unit vector \hat{a} for each of the following vectors.

(a)
$$a = 4i - 3j$$

(b)
$$a = -5i + 8j$$

Solution

(a) Divide the original vector by its magnitude to get a unit vector: $\hat{a} = \frac{1}{5} (4i - 3j)$

(b) Find the magnitude of the vector:
$$\left| \underline{a} \right| = \sqrt{(-5)^2 + 8^2}$$

$$=\sqrt{89}$$

Divide the original vector by its magnitude to get a unit vector: $\hat{a} = \frac{1}{\sqrt{89}} \left(-5i + 8j \right)$

$$=\frac{\sqrt{89}}{89}\left(-5\underline{i}+8\underline{j}\right)$$

Unit vectors can be used to find vectors in a specified direction.

Example 17

Given c = 3i - 6j:

(a) find ¿

(b) find vector d of magnitude 5 in the direction of g.

Solution

(a) Find the magnitude of the vector: $|\underline{c}| = \sqrt{3^2 + (-6)^2}$

$$=\sqrt{45}$$

$$=3\sqrt{5}$$

Find the unit vector by dividing the vector by its magnitude: $\hat{c} = \frac{1}{3\sqrt{5}} \left(3\underline{i} - 6\underline{j} \right)$

$$=\frac{\sqrt{5}}{5}\left(\underline{i}-2\underline{j}\right)$$

(b) Multiply the unit vector in the direction required by the required magnitude: $d = \frac{5\sqrt{5}}{5} (i - 2j)$

$$=\sqrt{5}\left(\underline{i}-2\underline{j}\right)$$