Question 1: Prove by mathematical induction that for all positive integer values of *n*:

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Step 1: When n=1, the left-hand side (LHS) is LHS=1, whereas the right-hand side (RHS) is $RHS=\frac{1(1+1)}{2}=\frac{2}{2}=1$.

Therefore the statement is true for n = 1

Step 2: Let assume that the statement is true for n = k, i.e.

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

In that case, for k + 1, the LHS of the equality is:

$$LHS = 1 + 2 + 3 + \dots + k + (k + 1)$$

$$LHS = \frac{k(k+1)}{2} + (k+1)$$
 using the assumption above

$$LHS = \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$LHS = \frac{k(k+1) + 2(k+1)}{2}$$

$$LHS = \frac{(k+1)(k+2)}{2}$$
 which is the same statement as the assumption above, for $(k+1)$

Therefore, if the statement is true for k, then it is true for (k + 1)

Step 3:

The statement is true for n = 1

The statement is true for (k + 1) if it is true for k.

Therefore, by induction, it is true for all $n \ge 1$

Question 2: Prove by mathematical induction that for all positive integer value

$$1 + 2 + 2^2 + \dots + 2^{n-1} = 2^n - 1$$

Step 1: When $n = 1$ side (RHS) is RHS	•	S) is $LHS = 1$, whereas the	right-hand
Therefore the	isfo	or $n=1$	
Step 2: Let	that the	is for <i>n</i> =	<i>k</i> , i.e.
	$1 + 2 + 2^2 + \cdots$	$\cdot + 2^{k-1} = 2^k - 1$	
In that	, for $k+1$, the LHS of th	e is:	
$LHS = 1 + 2 + 2^2 - 2^$	$+\cdots+2^{k-1}+2^k$		
$LHS = (2^k - 1) +$	· 2 ^k	the	above
$LHS = 2 \times 2^k - 1$			
$LHS = 2^{k+1} - 1$			
$LHS = 2^{k+1} - 1$		is the same above, for $(k+1)$	as the
, if the	is true for k	then it is true for	
Step:			
The i	s true for $n=1$		
The statement is _	for $(k+1)$ if i	t is for <i>k</i> .	
Therefore, by	, it is	for $n \ge 1$	

0	uestion 3	3: Prove	by mathematical	induction t	that for all	positive integer	values of n:
К			0) 111000110110001			P 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 611 61 6 6 7 7 7 7

$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Step 1 : When $n = 1$, the	(LHS) i	s LHS = 1, whereas the
(RHS) is <i>RHS</i>	$=\frac{1(1+1)(2\times 1+1)}{6}$	$=\frac{2\times3}{6}=1.$
the	_ is	$_{}$ for $n=1$

Step 2: Let _____ that the ____ is ____ for n = k, i.e.

$$1 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$$

In that ______ , for k + 1, the _____ of the _____ is:

$$LHS = 1 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$$

$$LHS = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$
 the assumption _____

$$LHS = \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$$

$$LHS = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$

$$LHS = \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$LHS = \frac{(k+1)(2k^2 + 7k + 6)}{6}$$

$$LHS = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$LHS = \frac{(k+1)(k+2)[2(k+1)+3]}{6}$$
 ______ is the ______ statement as the ______ above, for $(k+1)$ ______, if the ______ is true for _____, then it is ______ for _____

Step 3:

The _____ is true for _____

Question 4: Prove by mathematical induction that for all positive integer values of *n*:

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

Step 1: ______ n=1, the _____ (LHS) is $LHS=\frac{1}{1\times 3}$, _____ the _____ (RHS) is $RHS=\frac{1}{2\times 1+1}=\frac{1}{3}$. _____ the _____ is true for n=1

Step 2: _____ that the _____ is ____ for n = k, i.e.

$$\frac{1}{1\times3} + \frac{1}{3\times5} + \frac{1}{5\times7} + \dots + \frac{1}{(2k-1)(2k+1)} = \frac{k}{2k+1}$$

In that $_$ ___, for k + 1, the $_$ __ of the $_$ __ is:

$$LHS = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{[2(k+1)-1][2(k+1)+1]}$$

$$LHS = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2k+1)(2k+3)}$$

$$LHS = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$
 the _____ above

$$LHS = \frac{k(2k+3)}{(2k+1)(2k+3)} + \frac{1}{(2k+1)(2k+3)}$$

$$LHS = \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$

$$LHS = \frac{2k^2 + 3k + 1}{(2k+1)(2k+3)}$$

$$LHS = \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$

$$LHS = \frac{k+1}{2k+3}$$

$$LHS = \frac{k+1}{2(k+1)+1}$$
 _____ is the same _____ as the _____

_____, ___ the _____ is ____ for ___, ___ it is ____ for ____

Step 3:

The _____ is _____ for _____

The ______ is _____ for _____ if it is _____ for _____.

_____, by _____, it is _____ for all _____