LOGARITHMS – DEFINITION & LAWS OF LOGARITHMS

A logarithm (abbreviation "log") of a number to a given base is the power to which the base is raised to give the number.

Example 1:	$2^4 = 16$	therefore	$\log_2 16 = 4$
Example 2:	$10^3 = 1000$	therefore	$\log_{10} 1000 = 3$
Example 3:	$5^3 = 125$	therefore	$\log_5 125 = 3$

The base **a** is written as a subscript to the operator 'log', i.e. \log_a

So, if $a^n = x$ then $\log_a x = n$ We say 'log to the base a of x equals n'.First, we note that: $\log_a a = 1$ as $a^1 = a$ And also: $\log_a 1 = 0$ as $a^0 = 1$

The **laws of logarithms** are deduced from the index laws:

Let $a^n = x$ (and so $\log_a x = n$) and $a^m = y$ (and so $\log_a y = m$)

Index laws	Logarithms laws	
$xy = a^n \times a^m = a^{n+m}$	$\log_a(xy) = n + m = \log_a x + \log_a y$	
	therefore	$\log_a(xy) = \log_a x + \log_a y$
	Example:	$\log_2(35) = \log_2 5 + \log_2 7$
$\frac{x}{y} = a^n \div a^m = a^{n-m}$	$\log_a\left(\frac{x}{y}\right) = n - m = \log_a x - \log_a y$	
	therefore	$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$
	Example:	$\log_2(7) = \log_2 42 - \log_2 6$
$\frac{1}{x} = \frac{1}{a^n} = a^{-n}$	$\log_a\left(\frac{1}{x}\right) = -n = -\log_a x$	
	therefore	$\log_a\left(\frac{1}{x}\right) = -\log_a x$
	Example:	$\log_2\left(\frac{1}{32}\right) = -\log_2 32$
$x^p = (a^n)^p = a^{np}$	$\log_a(x^p) = np = pn = p\log_a x$	
	therefore	$\log_a(x^p) = p \times \log_a x$
	Example:	$\log_2(81) = \log_2(3^4) = 4\log_2 3$

LOGARITHMS – DEFINITION & LAWS OF LOGARITHMS

The calculator can only calculate:

- log_{10} (which is abbreviated "log" not showing that it is in fact "log of base 10"); and
- log_e (abbreviated "*ln*" (i.e. "*logarithm naturalis*") not showing it's in fact "*log of base e*")

So we need to find a way to calculate logarithms for other bases.

For this purpose, we use the **change of base rule**.

Change of base rule:

Let $\log_a x = n$ which is equivalent to $a^n = x$

Taking the logarithm to base *b* on both sides, we obtain: $\log_b a^n = \log_b x$

or $n \log_b a = \log_b x$ (as $\log_b (a^n) = n \times \log_b a$, from the previous page)

so $n = \frac{\log_b x}{\log_b a}$

therefore $\log_a x = \frac{\log_b x}{\log_b a}$

Example: evaluate $\log_2 9$ with the calculator, using either log_{10} or log_e (i.e. "*ln*")

with base 10	with base <i>e</i>
$\log_2 9 = \frac{\log_{10} 9}{\log_{10} 2} = 3.169925 \dots$	$\log_2 9 = \frac{\log_e 9}{\log_e 2} = \frac{\ln 9}{\ln 2} = 3.169925 \dots$

Results are equal indeed, and we can check that: $2^{3.169925} \approx 9$