3 Evaluate the following:

(a)
$$\int_{-1}^{2} 3x(2-x) dx$$

(a)
$$\int_{-1}^{2} 3x(2-x) dx$$
 (b) $4 \int_{-3}^{-1} x(x+1)^2 dx$ (c) $\int_{-2}^{4} (x^3-2) dx$

(c)
$$\int_{-2}^{4} (x^3 - 2) dx$$

- 7 Evaluate: (a) $\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} (\sin 2x \cos 2x) dx$ (b) $\int_{0}^{\frac{\pi}{2}} (\cos 2x x) dx$ (c) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\tan x} dx$

17 Evaluate: **(a)**
$$\int_{-2}^{2} (e^x - e^{-x}) dx$$
 (b) $\int_{-1}^{2} (e^x - e^{-x})^2 dx$ **(c)** $\int_{1}^{3} (e^x + \frac{1}{x}) dx$

(b)
$$\int_{-1}^{2} (e^x - e^{-x})^2 dx$$

(c)
$$\int_{1}^{3} \left(e^{x} + \frac{1}{x} \right) dx$$

- **21** The diagram shows the graphs of $y = \sqrt{3} \sin x$ and $y = \cos x$. The first two points of intersection to the right of the *y*-axis are labelled *P* and *Q*.
 - (a) Solve the equation $\sqrt{3}\sin x = \cos x$ to find the abscissae of *P* and *Q*.
 - (b) Find the area of the shaded region in the diagram.

- 23 The shaded region in the diagram is bounded by the curves $y = \sin \frac{\pi x}{2}$, $y = x^2$ and the x-axis. (a) Show that the two curves meet at x = 1.

 - (b) Calculate the exact area of the shaded region.

- **26** The velocity $v \text{ m s}^{-1}$ of a particle moving in a straight line is given by $v = 6t^2 4t + 1$ ($t \ge 0$). The particle initially has a displacement -10 m from O. Find:
 - (a) the displacement and acceleration at any time t
 - **(b)** the acceleration when the velocity is 3 m s⁻¹
 - (c) the velocity when the acceleration is $20 \,\mathrm{m \, s}^{-2}$.

- A full water tank holds 4000 litres. When the tap is turned on, water flows out from the tank at a rate of $\frac{dV}{dt} = 110 + 17t t^2$ litres per minute, where *t* is the time in minutes since the tap was turned on.
 - (a) At what time is the tank emptying at a rate of 50 litres per minute?
 - **(b)** Find the volume of water that has flowed out of the since the tap was turned on as a function of *t*.
 - (c) How much water has flowed out of the tank 12 minutes after the tap was turned on?
 - (d) When does the water stop flowing out of the tank?
 - (e) How much water is left in the tank (to the nearest litre) when the water stops flowing out of the tank?

- **29** (a) Sketch the graphs of $y = 2^x$ and $y = 3^{-x}$ over the domain $-1 \le x \le 2$.
 - (b) Calculate the area of the region bounded by the curves $y = 2^x$, $y = 3^{-x}$ and the ordinates x = -1 and x = 2.