Reminder: Power of a complex number using modulus-argument form (De Moivre's theorem) Let $z = r(\cos \theta + i \sin \theta)$ then: $z^n = r^n(\cos(n\theta) + i \sin(n\theta))$ i.e. $|z^n| = |z|^n$ and $arg(z^n) = n \times arg(z)$ This theorem was demonstrated in Lesson 2 by mathematical induction, and in Lesson 3 using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$.

De Moivre's theorem can be used to find the n^{th} root of z^n , as demonstrated in the example below:

Example 29

Find the cube roots of 1 (i.e. solve the equation $z^3 = 1$).

Solution

Let $z = r(\cos \theta + i \sin \theta)$ be a root, where *r* is a positive real number. Note that $1 = 1(\cos \theta + i \sin \theta)$.

Then:

$$r^{3}(\cos 3\theta + i \sin 3\theta) = 1(\cos 0 + i \sin 0)$$

$$r^{3} = 1 \quad (i.e. r = 1)$$
and

$$\cos 3\theta + i \sin 3\theta = \cos 0 + i \sin 0$$

$$\cos 3\theta = \cos 0 \quad \text{and} \quad \sin 3\theta = \sin 0$$

If you considered only $\sin 3\theta = \sin 0$, you would conclude that $3\theta = 0 + k\pi$ (where $k = 0, \pm 1, \pm 2, ...$). But $\cos 3\theta = \cos 0$ must also be true:

$$\therefore \quad 3\theta = 0 + 2k\pi \quad \text{(where } k = 0, \pm 1, \pm 2, \dots)$$

$$\therefore \quad \theta = \frac{2k\pi}{3}$$

Hence: $z = 1\left(\cos\frac{2k\pi}{3} + i\sin\frac{2k\pi}{3}\right) \quad \text{(where } k = 0, \pm 1, \pm 2, \dots)$
For $k = 0$: $z_1 = 1$
For $k = 1$: $z_2 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$
For $k = -1$: $z_3 = \cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$

It might appear that there are many more values of *z* obtained from $k = \pm 2, \pm 3, \dots$ However, if you check them you will find that they simply repeat the values of *z* that have already been found (because their cosines are

equivalent): e.g. for
$$k = 2$$
, $z = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = \cos \left(-\frac{2\pi}{3}\right) + i \sin \left(-\frac{2\pi}{3}\right) = z_3$

There are therefore only **three** cube roots of unity, and their representation on the complex plane reveals an interesting pattern. Each has a modulus of 1, so they are all on the circumference of a unit circle.

Furthermore, the non-real roots are a pair of conjugates (as they are the roots of a polynomial equation with real coefficients), $z_2 = \overline{z_3}$. The three roots are equally spaced around the circle, each separated by an angle of $\frac{2\pi}{3}$ at the centre. They form the vertices of an equilateral triangle.

Alternatively:

The equation can be solved algebraically. $z^3 - 1 = 0$

$$1)(z^2 + z + 1) = 0 \qquad \text{(difference of two cu$$

Hence z = 1 or $z = \frac{-1 \pm \sqrt{1-4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ as above.

(z -

Example 30

Find the six 6th roots of -64 (i.e. solve $z^6 = -64$).

Solution

Solution		
Let $z = r(\cos \theta)$	$\theta + i\sin\theta$) be a root.	
Then:	$r^{6}(\cos 6\theta + i\sin 6\theta) = 64(\cos \pi + i\sin \pi)$	
	$r^6 = 64$	
	r = 2 $(r > 0$ because	e it is the modulus of <i>z</i>)
and	$6\theta = \pi + 2k\pi$ (where $k = 0, \pm 1, \pm 2,$.)
	$\theta = \frac{\pi}{6} + \frac{2k\pi}{6}$	
Hence:	$z = 2\left(\cos\left(\frac{\pi}{6} + \frac{2k\pi}{6}\right) + i\sin\left(\frac{\pi}{6} + \frac{2k\pi}{6}\right)\right)$	(where $k = 0, \pm 1, \pm 2,$) Im
For $k = 0$:	$z_1 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \sqrt{3} + i$	-2 23
For $k = -1$:	$z_2 = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = \sqrt{3} - i$	
For $k = 1$:	$z_3 = 2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 2i$	$\frac{\pi}{3}$ $\frac{3}{3}$ $\frac{\pi}{3}$ $\frac{\pi}{3}$
For $k = -2$:	$z_4 = 2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = -2i$	$\frac{\pi}{3}$ $\frac{\pi}{3}$ z_2
For $k = 2$:	$z_5 = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) = -\sqrt{3} + i$	
For $k = -3$:	$z_6 = 2\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right) = -\sqrt{3} - i$	24

As each root has a modulus of 2, they are all on the circumference of a circle of radius 2. They are also equally spaced around the circumference, each separated by an angle of $\frac{2\pi}{6}$ (i.e. $\frac{\pi}{3}$) at the centre. The roots occur in conjugate pairs (as they are the roots of a polynomial equation with real coefficients). They form the vertices of a regular hexagon.

Example 31

Find the four 4th roots of $1 + \sqrt{3}i$ (i.e. solve $z^4 = 1 + \sqrt{3}i$). Answer in mod–arg form.

Solution

Let $z = r(\cos \theta + i \sin \theta)$ be a root.

The roots are equally spaced around the circumference of a circle of radius $\sqrt[4]{2}$. Because the polynomial equation $z^4 = 1 + \sqrt{3}i$ has non-real coefficients, the roots do not occur as conjugate pairs.

To summarise:

- The nth roots of 1 (i.e. the *n* roots of $z^n = 1$) are equally spaced around the circumference of the circle with centre *O* and radius 1, separated by an angle of $\frac{2\pi}{n}$ at the centre.
- One root is 1. If n is even, another root is (-1). The other roots occur as non-real conjugate pairs.
- The roots are $e^{\frac{2ki\pi}{n}} = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$ where $k = 0, \pm 1, \pm 2, \dots$ until the *n* unique roots are identified.
- The nth roots of any complex number $Re^{i\alpha}$ are equally spaced around the circumference of the circle with centre *O* and radius $\sqrt[n]{R}$ separated by an angle of $\frac{2\pi}{n}$ at the centre.
- The roots are $\sqrt[n]{R} e^{\frac{2ki\pi}{n}} = \sqrt[n]{R} \left[\cos\left(\frac{2k\pi}{n}\right) + i \sin\left(\frac{2k\pi}{n}\right) \right]$ where $k = 0, \pm 1, \pm 2, ...$ until the *n* unique roots are identified.

Complex roots of unity

To investigate some properties of the nth roots of 1, you can work with symbolic representations rather than the actual values of the roots.

An important result that is frequently used is the factorisation:

$w^{n} - 1 = (w - 1)(w^{n-1} + w^{n-2} + \dots + w^{2} + w + 1)$			
For example:	$w^3 - 1 = (w - 1)(w^2 + w + 1)$	which you already know	
Likewise	$w^5 - 1 = (w - 1)(w^4 + w^3 + w^2 + w + 1)$		

You can prove this general factorisation by expanding the RHS.

Example 32

If *w* is a non-real cube root of unity, show that:

(a) \overline{w} is also a root (b) $1 + w + \overline{w} = 0$ (c) $1 + w + w^2 = 0$ (d) $(1 + w^2)^3 (2 + 3w + 3w^2) = 1$

Solution

(a) w is a root of $z^3 = 1$, so $w^3 = 1$. Take conjugates of both sides (if two complex numbers are equal then their conjugates are equal): $\overline{w^3} = \overline{1+0i}$

 $(\overline{w})^3 = 1$ (the conjugate of a power equals the power of the conjugate) i.e. \overline{w} also satisfies $z^3 = 1$, so \overline{w} is also a root.

- (b) From part (a), you know the three roots of $z^3 1 = 0$ are 1, w and \overline{w} . Sum of roots $= -\frac{b}{a}$ $\therefore 1 + w + \overline{w} = 0$
- (c) $w^3 = 1$ $\therefore w^3 1 = 0$ Factorise: $(w - 1)(w^2 + w + 1) = 0$ $\therefore w - 1 = 0$ or $w^2 + w + 1 = 0$ But w is non-real $\therefore w^2 + w + 1 = 0$
- (d) Use the results $w^3 = 1$ and $w^2 + w + 1 = 0$ to obtain $1 + w^2 = -w$ and $w + w^2 = -1$: $(1 + w^2)^3(2 + 3w + 3w^2) = (-w)^3(2(1 + w + w^2) + w + w^2)$

$$= -w^{3}(2 \times 0 + (-1))$$

= -1 \times -1
= 1