1 Evaluate: **(a)**
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$
 (b) $\int_{0}^{\frac{1}{2}} \frac{1}{1+4x^2} dx$ **(c)** $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x}{\sqrt{1-x^2}} dx$ **(d)** $\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{1+x^2}} dx$

(b)
$$\int_0^{\frac{1}{2}} \frac{1}{1+4x^2} dx$$

(c)
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x}{\sqrt{1-x^2}} dx$$

(d)
$$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{1+x^2}} dx$$

- 2 Find:

- (a) $\int \frac{dx}{(1-x^2)^{\frac{3}{2}}}$ (b) $\int \frac{x^3+1}{x^2+1} dx$ (c) $\int \frac{x^3}{x^2+2x+1} dx$

3 Evaluate: **(a)**
$$\int_0^2 \frac{x}{(x^2+2)^2} dx$$
 (b) $\int_0^{\frac{\pi}{2}} \frac{\cos x}{1+\sin x} dx$ **(c)** $\int_0^1 \frac{e^x}{1+2e^x} dx$

(b)
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x} dx$$

(c)
$$\int_0^1 \frac{e^x}{1+2e^x} dx$$

3 Evaluate: (d)
$$\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \sin^2 x \cos^2 x \, dx$$
 (e) $\int_{\frac{3}{2}}^{4} \sqrt{2x+1} \, dx$

(e)
$$\int_{\frac{3}{x}}^{4} \sqrt{2x+1} \, dx$$

6 Find:

(a)
$$\int \frac{1-4x^2}{x} dx$$

(a)
$$\int \frac{1-4x^2}{x} dx$$
 (b) $\int (\sin x + \cos x)^2 dx$ (c) $\int \sin^2 x \cos x dx$ (d) $\int \sin x \sec^2 x dx$

(c)
$$\int \sin^2 x \cos x \, dx$$

(d)
$$\int \sin x \sec^2 x \, dx$$

(e)
$$\int \frac{\sin^2 x}{\cos^2 x} dx$$
 (f) $\int \sin^2 x \cos^2 x dx$ (g) $\int \cos^2 x dx$ (h) $\int \cos^4 x dx$

(f)
$$\int \sin^2 x \cos^2 x \, dx$$

(g)
$$\int \cos^2 x \, dx$$

(h)
$$\int \cos^4 x \, dx$$

9 Find: **(a)**
$$\int \frac{\cos 2\theta}{\sin^2 2\theta} d\theta$$
 (b) $\int xe^{-x^2} dx$ **(c)** $\int \frac{2x}{x^2 + 1} dx$

(b)
$$\int xe^{-x^2} dx$$

(c)
$$\int \frac{2x}{x^2 + 1} dx$$

9 Find: (d)
$$\int x \cos(x^2) dx$$
 (e) $\int \sec^2 x \tan^2 x dx$

(e)
$$\int \sec^2 x \tan^2 x \, dx$$

- **12** (a) Sketch the graph of the curve with equation: $y = \frac{x(3-x)}{x-1}$.
 - (b) Calculate the area of the region enclosed by the curve and the straight lines x + 3 = 0, x = 0 and y = 2 x.

- 17 (a) Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \sin x}$. (b) Hence find the value of $\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} dx$.