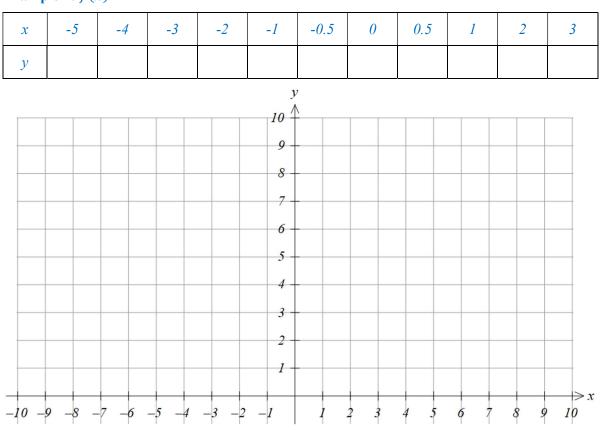
An exponential f	function is	of the form	$f(x) = a^x$	where $a >$	0 and $a \neq 1$
------------------	-------------	-------------	--------------	-------------	------------------

Examp	le 1	1: 1	f	(x)	=	2^x
LAump		•)				-

We can fill a table of values:



Example 2: $f(x) = 3^x$ Fill a table of values, then draw the function above

x	-5	-4	-3	-2	-1	-0.5	0	0.5	1	2	3
у											

Example 3: $f(x) = \left(\frac{1}{2}\right)^x$ Fill a table of values, then draw the function above

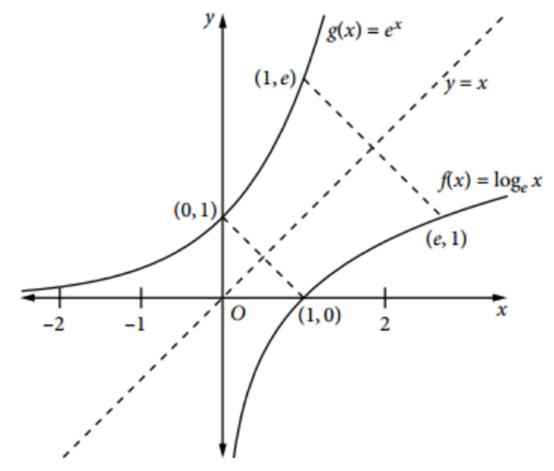
x	-5	-4	-3	-2	-1	-0.5	0	0.5	1	2	3
У											

Observations:

- All exponential functions:
 - pass through the point (0,1)
 - have y = 0 as an asymptote.
- For all exponential functions, the **domain** is \mathbb{R} (all real numbers) and the **range** is \mathbb{R}^+ .
- The larger the value of "*a*", the steeper the curve.
- The value of "a" for which the gradient of the curve at Point (0,1) is exactly 1 is 2.718281828.... This number is named e (from the mathematician Leonhard Euler who studied it extensively). This very special number continues indefinitely and never repeats, so it is an "*irrational*" number. Like the number π , it is also said to be "*transcendental*" as it cannot be a solution to a polynomial equation with rational coefficients.

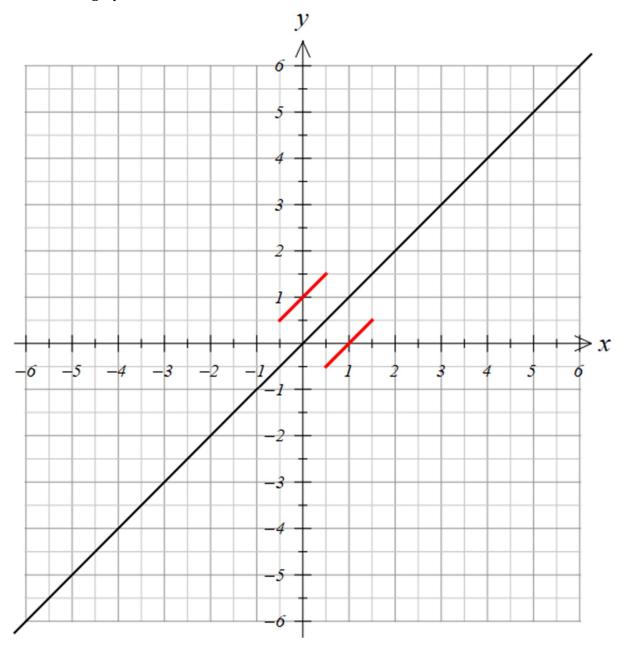
The inverse function of
$$f(x) = e^x$$
 is $f^{-1}(x) = ln(x)$ so $e^{ln(x)} = ln(e^x) = x$

Because these the functions f(x) = ln(x) and $g(x) = e^x$ are inverse of each other, their graphs are symmetrical about the line y = x, as shown on the graph below:



On the graph below, graph the functions $f(x) = e^x$ and g(x) = ln(x).

Note that because the gradient of the graph of $f(x) = e^x$ at the point (0,1) is 1 (by definition of the number e), the gradient of the graph of f(x) = ln(x) at the point (1,0), i.e. symmetrical of the point (0,1) with regard to the line y = x, is also 1. These gradients have been marked in **red** on the blank graph below.



On the graph below, graph the function $f(x) = e^{-x}$

The tangent at point (0,1) has been marked in **red** to assist graphing.

