1 Use mathematical induction to prove (c) $\sum_{r=1}^{n} (r^2 + 1)r! = n \times (n+1)!$

- 2 (a) Simplify $\frac{1}{r(r+1)} \frac{1}{(r+1)(r+2)}$. (b) Hence evaluate $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$. (c) Use mathematical induction to prove that $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$ equals the result that you obtained in part (b).

- **3** Consider the sequence of numbers defined by $T_1 = 3$, $T_n = 2 \times T_{n-1} + 3$ for all $n \ge 2$.

 - (a) List the first five terms of this sequence.
 (b) Prove by induction that T_n = 3(2ⁿ 1) for all integers n ≥ 1.

4 (a) If $u_{n+1} = 2u_n + 1$ for all positive integral values of n, use mathematical induction to prove that $u_n + 1 = 2^{n-1}(u_1 + 1)$.

6 If x > 0 and y > 0, prove by induction that $(x + y)^n > x^n + y^n$ for all integers $n \ge 2$.

- 7 (a) By writing $\cos([2k+1]x)$ as $\cos(2kx+x)$, and remembering that $\cos 2x = 1 2\sin^2 x$, show that: $\frac{\sin 2kx}{2\sin x} + \cos(2k+1)x = \frac{\sin(2(k+1)x)}{2\sin x}$
 - (b) Use the result of part (a) to prove by induction that $\cos x + \cos 3x + ... + \cos ([2n-1]x) = \frac{\sin(2nx)}{2\sin x}$ for all positive integers n.

8 If $x_1, x_2, x_3, ...x_n$ are positive real numbers, prove by induction that: $(x_1 + x_2 + x_3 + ... + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + ... + \frac{1}{x_n} \right) \ge n^2$ for all integers $n \ge 1$.

- **9** (a) Prove that $x + \sqrt{x} \ge \sqrt{x(x+1)}$ for all real $x \ge 0$.
 - (b) A sequence is defined as $u_1 = 1$, $u_2 = 2$, $u_n = u_{n-1} + (n-1)u_{n-2}$ for $n \ge 3$. Prove by induction that $u_n \ge \sqrt{n!}$.