INDEFINITE INTEGRALS

If
$$F(x)$$
 is a primitive of $f(x)$, then: $\int f(x) dx = F(x) + C$

where *C* is a constant.

 $\int f(x) dx$ is called the indefinite integral of f(x) and represents all the primitives of f(x). If further information is given, then a value for *C* may be calculated.

Particularly when $f(x) = x^n \ (n \neq 1)$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

This formula can be extended to a power of a function, as follows:

$$\int [f(x)]^n f'(x) \, dx = \frac{[f(x)]^{n+1}}{n+1} + C$$

which is really the chain rule in reverse, as: ${[f(x)]^{n+1}}' = (n+1) [f(x)]^n f'(x)$

Example 6
Find: (a)
$$\int (x^3 + 3x^2 - 2x + 1) dx$$
 (b) $\int (\sqrt{x} - 2) dx$
Solution
(a) $\int (x^3 + 3x^2 - 2x + 1) dx = \frac{x^4}{4} + x^3 - x^2 + x + C$
(b) $\int (\sqrt{x} - 2) dx = \int (x^{\frac{1}{2}} - 2) dx = \frac{2}{3}x^{\frac{3}{2}} - 2x + C$ or $\frac{2x\sqrt{x}}{3} - 2x + C$

Example 7

If $\frac{dy}{dx} = 1 + x - x^2$, find the equation of the curve *y* that passes through the point (6, -40).

C = 8

$$\frac{dy}{dx} = 1 + x - x^{2}; \qquad y = \int (1 + x - x^{2}) dx$$
$$y = x + \frac{x^{2}}{2} - \frac{x^{3}}{3} + C$$

Point (6, -40) is on the curve: -40 = 6 + 18 - 72 + C

The equation of the curve is $y = x + \frac{x^2}{2} - \frac{x^3}{3} + 8$.

PRIMITIVES OF TRIGONOMETRIC FUNCTIONS

$$\frac{d}{dx}(\sin x) = \cos x \qquad \text{therefore} \qquad \int \cos x \, dx = \sin x + C$$
$$\frac{d}{dx}(\cos x) = -\sin x \qquad \text{therefore} \qquad \int \sin x \, dx = -\cos x + C$$
$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \text{therefore} \qquad \int \sec^2 x \, dx = \tan x + C$$

Further, provided $a \neq 0$

$$\frac{d}{dx}[sin(ax+b)] = a \times cos(ax+b) \quad \text{therefore} \quad \int cos(ax+b) \, dx = \frac{1}{a}sin(ax+b) + C$$
$$\frac{d}{dx}[cos(ax+b)] = -a \times sin(ax+b) \quad \text{therefore} \quad \int sin(ax+b) \, dx = -\frac{1}{a}cos(ax+b) + C$$
$$\frac{d}{dx}[tan(ax+b)] = a \times sec^2(ax+b) \quad \text{therefore} \quad \int sec^2(ax+b) \, dx = \frac{1}{a}tan(ax+b) + C$$

Example 8
Find: (a)
$$\int (\sin x + 2\cos x) dx$$
 (b) $\int (\cos 2x + \sin 3x) dx$ (c) $\int \sin \frac{x}{2} dx$ (d) $\int (2\sin x + 3\cos \frac{x}{2}) dx$
Solution
(a) $\int (\sin x + 2\cos x) dx$ (b) $\int (\cos 2x + \sin 3x) dx$
 $= -\cos x + 2\sin x + C$ $= \frac{1}{2}\sin 2x - \frac{1}{3}\cos 3x + C$
(c) $\int \sin \frac{x}{2} dx$ (d) $\int (2\sin x + 3\cos \frac{x}{2}) dx$
 $= -2\cos \frac{x}{2} + C$ $= -2\cos x + 6\sin \frac{x}{2} + C$