- 1 Given three vectors a, b and c, as shown, construct the following:
 - (a) a+c
- (b) c+b
- (c) a-b
- (d) $\underline{c} \underline{a}$

- 2 *ABCD* is a parallelogram. If $\overrightarrow{AB} = \underline{a}$ and $\overrightarrow{BC} = \underline{b}$, express each of the following vectors in terms of \underline{a} and \underline{b} .
 - (a) <u>CD</u>
- (b) \overrightarrow{AD}
- (c) \overrightarrow{CA}
- (d) \overrightarrow{DB}

- 3 *ABCD* is a quadrilateral. If $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{BC} = \underline{b}$ and $\overrightarrow{CD} = \underline{c}$, express each of the following vectors in terms of \underline{a} , \underline{b} and \underline{c} .
 - (a) \overrightarrow{AC}
- (b) \overrightarrow{AD}
- (c) \overrightarrow{DA}
- (d) \overrightarrow{DB}

- 4 *ABCD* is a trapezium with \overrightarrow{DC} parallel to \overrightarrow{AB} and one-and-a-half times the length of \overrightarrow{AB} . If $\overrightarrow{AB} = a$ and $\overrightarrow{BC} = b$, express each of the following vectors in terms of a and b.
 - (a) \overrightarrow{CD}
- (b) \overrightarrow{CA}
- (c) AD
- (d) \overrightarrow{DB}

- 5 If all the short line segments shown are the same length, express the following in terms of a and b.
 - (a) \overrightarrow{OP}
- (b) \overrightarrow{OG}
- (c) \overrightarrow{OQ}
- (d) \overrightarrow{CE}

- (e) \overrightarrow{AB}
- (f) \overrightarrow{DI}
- (a) FO
- (h) $\overrightarrow{DE} + \overrightarrow{EO}$

- 6 \overrightarrow{BC} is parallel to \overrightarrow{OA} and twice its length. Express the following in terms of a and b.
 - (a) \overrightarrow{AB}
- (b) *Ā*♂

- 7 From the diagram, find the following in terms of a, b, c and d.
 - (a) \overrightarrow{VY}
- (b) \overrightarrow{VZ}
- (c) \overline{WZ}

- 8 In $\triangle ABC$, $\overrightarrow{AB} = a$, $\overrightarrow{BC} = b$ and $\overrightarrow{CA} = c$. Which *one* of the following statements is true?

 - A a+c=b B a+b+c=0
 - C a+b-c=0 D b+c=a

- 9 In the quadrilateral ABCD, which one of the following statements is true?
 - A $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CD} + \overrightarrow{DA}$
 - $\mathbf{B} \quad \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CD} \overrightarrow{DA}$
 - $C \quad \overrightarrow{AB} \overrightarrow{BC} = \overrightarrow{CD} \overrightarrow{DA}$
 - D $\overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CD} \overrightarrow{DA}$

10 In the parallelogram ABCD shown, the point of intersection of the diagonals is O, where O is the midpoint of both \overrightarrow{AC} and \overrightarrow{BD} .

The vector \overrightarrow{OC} is equal to:

B $\frac{1}{2}(a+b)$ C $\frac{1}{2}a-b$ D $\frac{1}{2}b-a$

11 $\triangle ABC$ is a triangle with $\overrightarrow{AB} = a$ and $\overrightarrow{AC} = c$. D and E are the midpoints of \overrightarrow{AB} and \overrightarrow{AC} respectively. F is a point on \overrightarrow{BC} such that $\overrightarrow{FC} = 2 \times \overrightarrow{BF}$.

- (b) Compare the vectors \overrightarrow{BC} and \overrightarrow{DE} .
- (c) What geometric property of a triangle does the answer to part (b) demonstrate?
- (d) Express the vectors \overrightarrow{BF} and \overrightarrow{FC} in terms of a and c.
- (e) Show that $\overrightarrow{AF} = \frac{1}{3}(2a + c)$.

12 *ABCD* is a parallelogram in which $\overrightarrow{AB} = \underline{b}$ and $\overrightarrow{AD} = \underline{d}$ and *E* is the midpoint of \overrightarrow{BC} .

- (a) Express \overrightarrow{AC} in terms of \underline{b} and \underline{d} .
- (b) Express \overrightarrow{AE} in terms of \overrightarrow{b} and \overrightarrow{d} .
- (c) Express \overrightarrow{DE} in terms of b and d.
- (d) If F is a point on \overrightarrow{DE} and $\overrightarrow{DF} = \frac{2}{3}\overrightarrow{DE}$, express \overrightarrow{DF} in terms of \underline{b} and \underline{d} .
- (e) Find \overrightarrow{AF} in terms of b and d, and hence show that F lies on \overrightarrow{AC} .
- (f) Find the ratio \overline{AF} : \overline{FC} .

