Given the graph of y = f(x), the graph of $y = \frac{1}{f(x)}$ is the **reciprocal function** of f(x). When graphing reciprocal functions, it is important to find where f(x) = 0, as these x values will give vertical asymptotes for the reciprocal function.

It is also important to note that where $f(x) \to \pm \infty$, $\frac{1}{f(x)} \to 0$.

Example 1

In each part, use the graph of the given function to draw the graph of $y = \frac{1}{f(x)}$.

(a) Given y = x, draw

(c) Given y = 1 - x, draw

$$y = \frac{1}{1 - x}.$$

- y 4 3 2 1 1 y=1-x -4 -3 -2 -1 0 1 2 3 4 x -2 -3 -4

Solution

(a) The graph of $y = \frac{1}{x}$ is undefined at x = 0, so x = 0 is a vertical asymptote.

The graph approaches y = 0 from above as $x \to \infty$.

The graph approaches y = 0 from below as $x \to -\infty$.

y = 0 is the horizontal asymptote.

 $x = \frac{1}{x}$ where $x = \pm 1$, hence the curves intersect at (-1, -1) and (1, 1).

(b) The graph of $y = \frac{1}{2x+1}$ is undefined at $x = -\frac{1}{2}$, so $x = -\frac{1}{2}$ is a vertical asymptote.

The graph approaches y = 0 from above as $x \to \infty$.

The graph approaches y = 0 from below as $x \to -\infty$.

y = 0 is the horizontal asymptote.

 $2x + 1 = \frac{1}{2x + 1}$ where x = -1, 0. Hence the curves intersect at (-1, -1) and (0, 1).

(c) The graph of $y = \frac{1}{1-x}$ is undefined at x = 1.

The graph approaches y = 0 from below as $x \to \infty$. The graph approaches y = 0 from above as $x \to -\infty$.

 $1-x=\frac{1}{1-x}$ where x=0, 2. The curves intersect at (0, 1) and (2, -1).

x = 1 is the vertical asymptote and y = 0 is the horizontal asymptote.

All these reciprocal functions are rectangular hyperbolas.

Example 2

- (a) Given the graph of $y = x^2$, draw $y = \frac{1}{x^2}$.
- (b) Given the graph of $y = (x 2)^2$, $\text{draw } y = \frac{1}{(x - 2)^2}$.
- (c) Given the graph of y = (x + 2)(1 x), draw $y = \frac{1}{(x + 2)(1 - x)}$.

Solution

(a) The graph of $y = \frac{1}{x^2}$ is undefined at x = 0.

The graph approaches y = 0 from above as $x \to \infty$.

The graph approaches y = 0 from above as $x \to -\infty$.

The function is never negative.

 $x^2 = \frac{1}{x^2}$ where $x = \pm 1$. The curves intersect at (-1, 1) and (1, 1).

x = 0 is the vertical asymptote and y = 0 is the horizontal asymptote.

(b) The graph of $y = \frac{1}{(x-2)^2}$ is undefined at x = 2.

The graph approaches y = 0 from above as $x \to \infty$.

The graph approaches y = 0 from above as $x \to -\infty$.

The function is never negative.

$$(x-2)^2 = \frac{1}{(x-2)^2}$$
 where $x = 1$, 3. The curves intersect at

(1, 1) and (3, 1).

x = 2 is the vertical asymptote and y = 0 is the horizontal asymptote.

x = 2 is an axis of symmetry.

(c) The graph of $y = \frac{1}{(x+2)(1-x)}$ is undefined at x = -2, 1.

The graph approaches y = 0 from below as $x \to \infty$.

The graph approaches y = 0 from below as $x \to -\infty$.

The maximum value of (x + 2)(1 - x) is $\frac{9}{4}$ and occurs

Thus the least positive value of $\frac{1}{(x+2)(1-x)}$ is $\frac{4}{9}$ and

occurs at
$$x = -\frac{1}{2}$$
.

$$x < -2$$
, $\frac{1}{(x+2)(1-x)} < 0$; $-2 < x < 1$, $\frac{1}{(x+2)(1-x)} > \frac{4}{9}$;

$$x > 1, \frac{1}{(x+2)(1-x)} < 0$$

x > 1, $\frac{1}{(x+2)(1-x)} < 0$. x = -2 and x = 1 are the vertical asymptotes, y = 0 is the horizontal asymptote.

 $x = -\frac{1}{2}$ is an axis of symmetry.

Each of these graphs has a vertical axis of symmetry.

Examples 3a) and 3b)

(a) Given the graph of $y = x^3$, draw $y = \frac{1}{x^3}$.

(b) Given the graph of y = x(x+1)(x-2), draw the graph of $y = \frac{1}{x(x+1)(x-2)}$.

Solution

(a) The graph of $y = \frac{1}{x^3}$ is undefined at x = 0.

The graph approaches y = 0 from above as $x \to \infty$. The graph approaches y = 0 from below as $x \to -\infty$.

 $x^3 = \frac{1}{x^3}$ where $x = \pm 1$. The curves intersect at (-1, -1) and (1, 1). x = 0 is the vertical asymptote, y = 0 is the horizontal asymptote.

The curve does not have an axis of symmetry, but has rotational (point) symmetry about the origin.

symmetry about the origin.

The graph approaches y = 0 from above as $x \to \infty$. The graph approaches y = 0 from below as $x \to -\infty$.

The graph approaches y = 0 from below as $x \to -\infty$. x = -1, 0, 2 are the vertical asymptotes, y = 0 is the horizontal asymptote.

The curve does not have an axis of symmetry.

Examples 3c) and 3d)

(c) Given the graph of $y = (2 - x)(x + 1)^2$, draw the graph of $y = \frac{1}{(2 - x)(x + 1)^2}$.

Solution

(c) The graph of $y = \frac{1}{(2-x)(x+1)^2}$ is undefined at x = -1, 2.

The graph approaches y = 0 from below as $x \to \infty$.

The graph approaches y = 0 from above as $x \to -\infty$.

x = -1, 2 are the vertical asymptotes, y = 0 is the horizontal asymptote.

It looks as though $y = (2 - x)(x + 1)^2$ has a local maximum

value of 4 at x = 1. (This can be shown using calculus.) Hence $y = \frac{1}{(2-x)(x+1)^2}$ will have a local minimum value

of $\frac{1}{4}$ at x = 1.

(d) The graph of $y = \frac{1}{x^3 + 2x^2 + 1}$ is undefined at $x \approx -2.2$.

The graph approaches y = 0 from above as $x \to \infty$.

The graph approaches y = 0 from below as $x \to -\infty$.

x = -2.2 is the vertical asymptote, y = 0 is the horizontal asymptote. The curves touch at (0, 1), a local minimum of the original function

becomes a local maximum of the reciprocal function.

As the Examples above show, a maximum turning point on the original function becomes a minimum turning point on the reciprocal function (or equivalent asymptote). A minimum turning point on the original function becomes a maximum turning point on the reciprocal function (or equivalent asymptote).