1 Evaluate: (a)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} x \cos x \, dx$$
 (b) $\int_{3}^{4} \frac{5x-7}{x^2-3x+2} \, dx$

(b)
$$\int_{3}^{4} \frac{5x-7}{x^2-3x+2} dx$$

2 Find: (a)
$$\int \log_e 2x \, dx$$

$$(b) \int \frac{x+2}{x^2-1} dx$$

4 Evaluate: (a)
$$\int_{1}^{\sqrt{3}} \tan^{-1} x \, dx$$
 (b) $\int_{-2}^{2} \frac{6}{9 - x^2} dx$

(b)
$$\int_{-2}^{2} \frac{6}{9-x^2} dx$$

- **5** Find the derivative of $\log_e(\csc x + \cot x)$ and deduce the value of:
 - (a) $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc \frac{\theta}{2} d\theta$ (b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec u du$

- 6 (a) Find the derivative of: $\frac{\sin x}{1-\sin^2 x} + \log_e \sqrt{\frac{1+\sin x}{1-\sin x}}$
 - **(b)** Hence evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^3 \theta \, d\theta$

- 7 (a) Write (x 1)(7 x) in the form b² (x a)², where a and b are real numbers.
 (b) Using the values of a and b from part (a) and making the substitution x a = b sin θ, or otherwise, evaluate: $\int_{1}^{7} \sqrt{(x-1)(7-x)} \, dx$

9 Reduce each rational function to its partial fractions.

(a)
$$\frac{x^2 - 10x + 13}{(x-1)(x^2 - 5x + 6)}$$
 (b) $\frac{x^2 + 10x + 16}{(x-1)(x^2 - 4)}$

(b)
$$\frac{x^2 + 10x + 16}{(x-1)(x^2-4)}$$

13 Evaluate:

(a)
$$\int_{1}^{3} \frac{2x^{2} + 2x + 5}{(x^{2} + 3)(2x - 1)} dx$$
 (b) $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} x \cos x \, dx$

(b)
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} x \cos x \, dx$$

14 Differentiate $\log_e x - \log_e \left(a + \sqrt{a^2 - x^2} \right)$ where a > 0 and deduce the value of: $\int_3^4 \frac{dx}{x\sqrt{25 - x^2}}$

15 Evaluate: **(a)**
$$\int_{1}^{4} (x+1)\sqrt{x} \, dx$$
 (b) $\int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx$ **(c)** $\int_{5}^{6} \frac{dx}{x^2 - 16}$

(b)
$$\int_0^{\frac{\pi}{2}} \cos x \ e^{\sin x} \ dx$$

(c)
$$\int_{5}^{6} \frac{dx}{x^2 - 16}$$

15 Evaluate: **(d)** $\int_{-1}^{1} (2x-1) \sin x \, dx$ **(e)** $\int_{0}^{3} x^{2} \sqrt{9-x^{2}} \, dx$

(e)
$$\int_{0}^{3} x^{2} \sqrt{9 - x^{2}} dx$$

16 Find: **(a)**
$$\int \frac{dx}{1-4x^2}$$
 (b) $\int \frac{x}{1-4x^2} dx$ **(c)** $\int \frac{x^2}{1-4x^2} dx$

(b)
$$\int \frac{x}{1-4x^2} dx$$

(c)
$$\int \frac{x^2}{1-4x^2} dx$$

16 Find: (d)
$$\int \frac{x}{\sqrt{1-4x^2}} dx$$
 (e) $\int \frac{dx}{\sqrt{1-4x^2}}$ (f) $\int \frac{dx}{1+4x^2}$

(e)
$$\int \frac{dx}{\sqrt{1-4x^2}}$$

(f)
$$\int \frac{dx}{1+4x^2}$$

17 Find: (a)
$$\int \frac{dx}{\sin x + \tan x}$$
 (b) $\int \frac{dx}{5 + 4\cos 2x}$

(b)
$$\int \frac{dx}{5 + 4\cos 2x}$$

17 Find: (c)
$$\int \frac{d\theta}{4\cos\theta - 3\sin\theta}$$

18 Use the substitution $t = \tan \frac{x}{2}$ to find the exact value of $\int_0^{\frac{\pi}{3}} \frac{1}{4 + 5\cos x} dx$.

19 Find: $\int x \log_e 2x \, dx$

20 Find: **(a)**
$$\int \frac{x^2+1}{x^3+3x} dx$$
 (b) $\int \frac{dx}{x^2+2x+1}$

(b)
$$\int \frac{dx}{x^2 + 2x + 1}$$

20 Find: (c)
$$\int \frac{x^3 + 1}{x} dx$$

(d)
$$\int \frac{x+1}{\sqrt{x^2+2x-3}} dx$$

20 Find: (e)
$$\int \frac{x+4}{x^3+4x} dx$$
 (f) $\int \frac{dx}{x^3-1}$

(f)
$$\int \frac{dx}{x^3 - 1}$$

20 Find: **(g)** $\int x \sin^{-1} x \, dx$

21 Find: (a)
$$\int \frac{dx}{x^2 - 4x - 1}$$
 (b) $\int \frac{dx}{3x^2 + 6x + 10}$

(b)
$$\int \frac{dx}{3x^2 + 6x + 10}$$

21 Find: (c)
$$\int \frac{dx}{\sqrt{x^2 - 4x + 1}}$$
 (d) $\int \frac{dx}{\sqrt{x^2 + 16}}$

(d)
$$\int \frac{dx}{\sqrt{x^2 + 16}}$$

23	Calculate the area of the region bounded by the curve $y = xe$, the x-axis and the line $x = 1$.

FURTHER INTEGRATION - CHAPTER REVIEW			
24 Sketch the graph of $y = \frac{\cos x}{1 + \cos x}$ for $-\pi < x < \pi$, stating the coordinates of its intersection with the <i>x</i> -axis and of the turning point. Find the area of the region bounded by the curve and the <i>x</i> -axis.			

- 27 (a) Using the substitution u = a x, or otherwise, prove that $\int_0^a f(x) dx = \int_0^a f(a x) dx$.
 - **(b)** Hence evaluate $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$