- 1 A function is given by $f(x) = x^2 6x + 8$.
 - (a) Find f'(x). (b) Find the coordinates of any stationary points and determine their nature.
 - (c) Sketch y = f(x).

- 2 If $f'(x) = x^2 5x 6$ then stationary points may occur when:

 - **A** x=1,-6 **B** x=-2,-3 **C** x=-1,6 **D** x=-3,2

- **5** A function is given by $f(x) = 2x^3 15x^2 + 36x$.
 - (a) Find f'(x). (b) Find the coordinates of any stationary points and determine their nature.
 - (c) Sketch y = f(x).

7 Find the maximum value of $5x - 2x^2$.

9	Sketch the curve $y = x^3 - 6x^2$ over the domain $-1 \le x \le 6$, showing the maximum and minimum turning points.

13 Prove that the parabola $y = ax^2 + bx + c$ has a turning point at $x = \frac{-b}{2a}$.

14 Show that the hyperbola $y = \frac{1}{x}$ has no turning points. Also show that its gradient is always negative throughout its domain.