- 1 Write each complex number in both polar and Cartesian form.
 - (a) $e^{\frac{i\pi}{3}}$
- **(b)** $e^{\frac{i\pi}{2}}$

- (c) $e^{\frac{5\pi i}{6}}$ (d) $e^{\frac{i\pi}{4}}$ (e) $e^{\frac{-i\pi}{2}}$ (f) $e^{\frac{-2\pi i}{3}}$ (g) $e^{1-\frac{i\pi}{2}}$ (h) $e^{2+\frac{i\pi}{3}}$

- **2** Write each complex number in the form $re^{i\theta}$, giving any decimal answers correct to two decimal places, where
 - (a) $3(\cos 1.5 + i\sin 1.5)$
- **(b)** $-\sqrt{3} + i$
- (c) 3+2i (d) $4(\cos 2 i\sin 2)$

(e) 2-2i

- (f) $4\left(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$ (g) $-2 2\sqrt{3}i$ (h) $(1+\sqrt{2}) + (1-\sqrt{2})i$

- 3 If $\cos \frac{\pi}{4} = 2\cos^2 \frac{\pi}{8} 1$, then the complex number $\frac{1}{2} \left(\sqrt{2 + \sqrt{2}} + i\sqrt{2 \sqrt{2}} \right)$ is equal to:
 - $A \quad e^{\frac{5\pi i}{8}}$

 $\mathsf{B} \quad e^{\frac{-5\pi i}{8}}$

- C $e^{\frac{i\pi}{8}}$ D $e^{\frac{-i\pi}{8}}$

- **4** (a) Given that $e^{i\theta} = \cos \theta + i\sin \theta$, write an expression for $e^{-i\theta}$.
 - **(b)** Using part **(a)**, obtain expressions for $\sin \theta$ and $\cos \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$.

- **6** (a) Write $z = 1 \sqrt{3}i$ in the form $re^{i\theta}$.
 - (b) Hence find the following in both polar form and Cartesian form.
 - (i) z^2
- (ii) z^3
- (iii) z^5
- (iv) \sqrt{z}
- (v) $\frac{1}{z}$

- 9 (a) Given $e^{i\theta} = \cos \theta + i\sin \theta$, write expressions for $e^{3i\theta}$ and $\left(e^{i\theta}\right)^3$.
 - **(b)** Hence write expressions for $\cos 3\theta$ in terms of $\cos \theta$ and $\cos^3 \theta$.
 - (c) Hence write expressions for $\sin 3\theta$ in terms $\sin \theta$ and $\sin^3 \theta$.

10 Given that $\frac{1-3i}{1+2i} = re^{i\theta}$, r > 0 and for $-\pi < \theta \le \pi$, find the values of r and θ .

- 14 Given $z_1 = 2e^{\frac{i\pi}{8}}$, $z_2 = 3e^{\frac{5i\pi}{12}}$, $z_3 = \frac{1}{3}e^{\frac{-5i\pi}{6}}$ and $z_4 = \frac{1}{2}e^{\frac{-3i\pi}{4}}$, find the polar form for each of the following, plotting each one on the Argand plane. (a) $z_1^2 \times z_4$ (b) $z_2 \times z_3$ (c) $z_1 \times z_2 \times z_3 \times z_4$ (d) $\frac{z_1^2}{z_4}$ (e) $\frac{\sqrt{z_3}}{z_2}$

- **16** *OABC* is a square on an Argand diagram. *O* represents 0, *A* represents -4 + 2i, *B* represents *z*, *C* represents *w* and *D* is the point where the diagonals of the square meet. Note that there are two squares that satisfy these requirements. For each square, find:
 - (a) the complex numbers represented by C and D in Cartesian form
 - **(b)** the value of $\arg\left(\frac{w}{z}\right)$.

17	On an Argand diagram, <i>OABC</i> is a rectangle. The length of <i>OC</i> is twice the length of <i>OA</i> . The vertex <i>A</i>
	corresponds to the complex number z . Find the complex number represented by D , the point of intersection
	of the diagonals <i>OB</i> and <i>AC</i> .