Differentiating a function once to obtain f'(x) or $\frac{dy}{dx}$ gives you the first derivative of the original function. Differentiating the first derivative gives you f''(x) or $\frac{d^2y}{dx^2}$, which is called the **second derivative** of the original function. The second derivative is the rate of change of the first derivative (i.e. of the gradient function): $\frac{d}{dx}(f'(x))$. Differentiating again will give the third derivative, and so on. The differentiation process may be continued for as long as a derivative exists.

Notation

Several different notations can be used for derivatives. If y = f(x), then:

- the first derivative can be written $\frac{dy}{dx}$, f'(x), $\frac{d}{dx}(f(x))$ or y'
- the second derivative can be written $\frac{d}{dx} \left(\frac{dy}{dx} \right), \frac{d^2y}{dx^2}, f''(x), \frac{d}{dx} (f'(x))$ or y''.

Example 7

Find the second derivative of each function.

(a)
$$y = 4x^3 - 2x^2 + 3x + 7$$

(b)
$$f(x) = (2x+1)^5$$

(c)
$$y = \frac{x^2}{x+1}$$

Solution

(a)
$$y = 4x^3 - 2x^2 + 3x + 7$$
:
 $\frac{dy}{dx} = 12x^2 - 4x + 3$
 $\frac{d^2y}{dx^2} = 24x - 4$

(b)
$$f(x) = (2x+1)^5$$
:
 $f'(x) = 5(2x+1)^4 \times 2$
 $= 10(2x+1)^4$
 $f''(x) = 10 \times 4(2x+1)^3 \times 2$
 $= 80(2x+1)^3$

(c)
$$y = \frac{x^2}{x+1}$$
: $y' = \frac{2x(x+1) - x^2 \times 1}{(x+1)^2}$
= $\frac{2x^2 + 2x - x^2}{(x+1)^2}$
= $\frac{x^2 + 2x}{(x+1)^2}$

(c)
$$y = \frac{x^2}{x+1}$$
: $y' = \frac{2x(x+1) - x^2 \times 1}{(x+1)^2}$ $y'' = \frac{(2x+2)(x+1)^2 - (x^2+2x) \times 2(x+1)}{(x+1)^4}$

$$= \frac{2x^2 + 2x - x^2}{(x+1)^2} = \frac{2(x+1)^3 - 2(x+1)(x^2+2x)}{(x+1)^4}$$

$$= \frac{x^2 + 2x}{(x+1)^2} = \frac{2(x+1)((x+1)^2 - (x^2+2x))}{(x+1)^4}$$

$$= \frac{2(x+1)((x+1)^2 - (x^2+2x))}{(x+1)^4}$$

$$= \frac{2(x^2 + 2x + 1 - x^2 - 2x)}{(x+1)^3}$$

$$= \frac{2}{(x+1)^3}$$

Concavity

The **concavity** of a function describes the general curvature of a graph of a non-linear function. Graphs can be 'concave upwards' and 'concave downwards':

The function is concave up. **Note**: This has a minimum turning point.

The function is concave down. **Note**: This has a maximum turning point.

The left-hand part is concave down. The right-hand part is concave up. Concavity changes at x = 1.

The second derivative is the rate at which the first derivative is changing. This gives information about the concavity of a function.

In each diagram below, a series of tangents have been drawn.

1 The tangents have a positive gradient and the gradient is increasing from left to right.

If the gradient of the tangent = $\frac{dy}{dx}$, then $\frac{dy}{dx} > 0$.

The rate at which the gradient is increasing = $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$.

Because the gradient is increasing, $\frac{d^2y}{dx^2} > 0$: the curve is concave up.

Because the gradient is increasing, $\frac{d^2y}{dx^2} > 0$: the curve is concave up.

Because the gradient is decreasing, $\frac{d^2y}{dx^2}$ < 0: the curve is concave down.

If the gradient of the tangent = $\frac{dy}{dx}$, then $\frac{dy}{dx} > 0$.

Because the gradient is decreasing, $\frac{d^2y}{dx^2}$ < 0: the curve is concave down.

Initially the gradient is decreasing, $\frac{d^2y}{dx^2} < 0$, but then it starts increasing, $\frac{d^2y}{dx^2} > 0$. This means that at some point $\frac{d^2y}{dx^2} = 0$. This is also where the concavity changes from concave down to concave up, so this point is called a **point of inflection**.

Initially the gradient is increasing, $\frac{d^2y}{dx^2} > 0$, but then it starts decreasing, $\frac{d^2y}{dx^2} < 0$. This means that at some point $\frac{d^2y}{dx^2} = 0$. This is also where the concavity changes from concave down to concave up, so this is a point of inflection.

The sign of the second derivative

- If $\frac{d^2y}{dx^2} > 0$ on an interval then the curve is concave upwards on that interval.
- If $\frac{d^2y}{dx^2}$ < 0 on an interval then the curve is concave downwards on that interval.
- If $\frac{d^2y}{dx^2} = 0$ at a point on the curve and the concavity changes at this point, then the point is called a

Example 8

For what values of x is the curve given by $y = x^3 - 3x^2 + 6x + 3$:

- (a) concave up
- (b) concave down?
- (c) Find the coordinates of the point of inflection. (d) Sketch the curve.

Solution

Find $\frac{dy}{dx}$: $\frac{dy}{dx} = 3x^2 - 6x + 6$ Find $\frac{d^2y}{dx^2}$: $\frac{d^2y}{dx^2} = 6x - 6$ (a) Concave up, $\frac{d^2y}{dx^2} > 0$: 6x - 6 > 0 x > 1The curve is concave up for x > 1. The curve is concave down for x < 1

The curve is concave up for x > 1.

The curve is concave down for x < 1.

(c) Inflection point, $\frac{d^2y}{dx^2} = 0$: x = 1 (d)

x < 1, curve is concave down

x > 1, curve is concave up

 \therefore concavity changes at x = 1

x = 1, y = 1 - 3 + 6 + 3 = 7.. point of inflection is (1,7)