INTEGRATION OF sin^2x AND cos^2x

1 Find: **(a)** $\int 2\cos^2 x \, dx$ **(b)** $\int 2\sin^2 x \, dx$ **(c)** $\int \sin^2 \frac{x}{2} \, dx$

INTEGRATION OF sin^2x AND cos^2x

- **1** Find: (d) $\int 2\cos^2 \frac{x}{2} dx$ (e) $\int \sin^2 3x \, dx$ (f) $\int \cos^2 4x \, dx$

INTEGRATION OF sin²x AND cos²x

(a)
$$\int_0^{\frac{\pi}{2}} 2\sin^2 x \, dx$$

(b)
$$\int_0^{\frac{\pi}{4}} \sin^2 x \, dx$$

2 Evaluate: **(a)**
$$\int_0^{\frac{\pi}{2}} 2\sin^2 x \, dx$$
 (b) $\int_0^{\frac{\pi}{4}} \sin^2 x \, dx$ **(c)** $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 x \, dx$

INTEGRATION OF sin²x AND cos²x

- 3 The region under the curve $y = \sin x$ between x = 0 and $x = \pi$ is rotated about the x-axis. The volume of the solid of revolution formed is given by:

- **A** $\int_0^{\pi} \sin^2 x \, dx$ **B** $\pi \int_0^{\pi} \sin x \, dx$ **C** $\pi \int_0^{\pi} \sin^2 x \, dx$ **D** $\pi \int_0^{\pi} \sin x^2 \, dx$
- **4** The region under the curve $y = \cos x$ between $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ is rotated about the *x*-axis. Find the volume of the solid of revolution formed.

INTEGRATION OF sin²x AND cos²x

9 The region bounded by the curves $y = \sin 3x$, the *x*-axis and the ordinate $x = \frac{\pi}{12}$ is rotated about the *x*-axis. Calculate the exact value of the volume of the solid of revolution formed.

INTEGRATION OF sin²x AND cos²x

- 10 The region bounded by the curves $y = \sin x$, $y = \cos x$ and the x-axis between x = 0 and $x = \frac{\pi}{2}$ is rotated about the x-axis.
 - (a) Find the point of intersection of the two curves.
 - (b) Calculate the exact value of the volume of the solid of revolution formed.