1 If $\frac{dy}{dx} = 2y$ and y = 5 where x = 0, express y as a function of x.

- 2 If $\frac{dN}{dt} = -0.5N$ and N = 100 when t = 0, then N expressed as a function of t is: A $N = 100e^{0.5t}$ B $N = 100e^{-0.5t}$ C $N = 0.5e^{100t}$ D $N = 0.5e^{-100t}$

4 If $\frac{dy}{dt} = -3y$ and y = 20 when t = 0, express y as a function of t.

7 If $N = Ae^{kt}$, N = 200 when t = 0, and N = 1478 when t = 5, find the values of A and k.

9	The population of a city increases at a rate that is proportional to the current population. If the population of the city was 100000 in the year 2000 and 120000 in the year 2010 , express the population P in terms of t years after 2000 .
11	The rate of decay of a radioactive isotope is proportional to the amount of the isotope present at any time. If one-half of a given quantity of the isotope decays in 1600 years, what percentage will decay in 100 years?

- **12** The number of bacteria *N* in a colony after *t* minutes is given by $N = 10\,000e^{0.05t}$. Find:
 - (a) the number of bacteria after 10 minutes
 - (b) the time required for the original number to double.
 - (c) Find the rate at which the colony increases when: (i) t = 10
- (ii) N = 20000

- 13 A vessel filled with liquid is being emptied. The volume V cubic metres of liquid remaining after t minutes is given by $V = V_0 e^{-kt}$.
 - (a) Show that $\frac{dV}{dt} = -kV$.
 - (b) If one-quarter of the vessel is emptied in the first 5 minutes, what fraction remains after 10 minutes?
 - (c) At what rate is the liquid flowing out:
 - (i) after 10 minutes
- (ii) when one-quarter of the vessel is empty.

- 14 For a period of its life, the increase in the diameter of a tree approximately follows the rule $D(t) = Ae^{kt}$, where D(t) is the diameter of the tree t years after the beginning of this period.
 - (a) If the diameter is initially 50 cm, find the value of A.
 - **(b)** If D'(t) = 0.1D(t), find the value of k.
 - (c) After how many years is the diameter 61 cm?

- 15 The charge Q (measured in coulombs) on the plate of a condenser t seconds after it starts to discharge is given by the formula $Q = Ae^{-kt}$.
 - (a) If the original charge is 5000 coulombs, find the value of A.
 - **(b)** If $\frac{dQ}{dt} = -2000$ when Q = 1000, find the value of k.
 - (c) Find the rate of discharge when Q = 5000.

- **16** The rate of increase in the number *N* of bacteria in a certain culture is given by $\frac{dN}{dt}$ = 0.15*N*, where *t* is time in hours.
 - (a) If the original number of bacteria is 1000, express N as a function of t.
 - **(b)** After how many hours has the original number of bacteria doubled? What is the rate of increase at this time?

- 17 Sunlight transmitted into water loses intensity as it penetrates to greater depths according to the law $I(d) = I(0)e^{-kd}$, where I(d) is the intensity at depth d metres below the surface. If I(300) = 0.3I(0), find:
 - (a) the value of k (b) the depth at which the intensity would be decreased by one-half.

- 18 The rate of increase of the population P(t) of a particular island is given by the equation $\frac{d}{dt}P(t) = kP(t)$, where t is time in years. In the year 2000 the population was 1000 and in 2010 it had decreased to 800.
 - (a) Find *k*, the annual growth rate.
- (b) In how many years will the population be half that in 2000?

19 A substance decomposes at a rate equal to k times the mass of the substance present. If initially the mass is M, find the mass m at time t. If k = 0.1, find the value of t for which $m = \frac{M}{2}$.

- **20** A heated body is cooling. The excess of its temperature above that of its surroundings is $\theta = Ae^{-kt}$, where θ is measured in °C and t is in minutes.
 - (a) At time t = 0, $\theta = 80$. Find A.
 - (b) If the temperature of the surroundings is 20°C and the body cools to 70°C in 10 minutes, find:
 - (i) the body's temperature after 20 minutes
- (ii) the time taken to reach 60°C.

21 The number *N* of bacteria in a colony grows according to the rule $\frac{dN}{dt} = kN$. If the original number increases from 4000 to 8000 in 4 days, find the number after another 4 days.

22 A population of size N is decreasing according to the rule $\frac{dN}{dt} = -\frac{N}{100}$, where t is the time in days. If the population is initially of size N_0 , find how much time it takes for the size to be halved, to the next day.

23 A radioactive substance decays at a rate that is proportional to the mass of radioactive substance present at any time. If 10% decays in 200 years, what percentage of the original radioactive mass will remain after 1000 years?