TRANSFORMATIONS OF GRAPHS USING y = k f(x) AND y = k f(x + b)

Consider the following graphs:
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If y =7 is written as y = f{x) then y = 2x* becomes y = 2f(x) and y = 2(x — 1)* becomes y=2f(x - 1).
In y=2f(x) the curve for y = f{x) has stretched (dilated) by a factor of 2 from the x-axis.

In y=2f(x = 1) the curve for y = f{x) has been moved 1 unit to the right and then stretched by a factor of 2 from
the x-axis.

Now consider the following exponential graphs:
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If y = ¢* is written as y = f{x) then y = 3¢* becomes y = 3f(x) and y=3¢**" becomes y=3f{x + 1).
In y = 3f(x) the curve for y = f(x) has stretched (dilated) by a factor of 3 from the x-axis.

In y =3f{x + 1) the curve for y= f(x) has been moved 1 unit to the left and then been stretched by a factor of 3 from
the x-axis.

In all these cases, the graph of y = kf(x) is just the graph of y = f{x) stretched (dilated) by a factor of k.

As for the cases in the previous section, the graph of y = k f{x + b) is just the graph of y = f{x) stretched (dilated) by a
factor of k and also translated horizontally b units to the left.
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