SIMPLE TRIGONOMETRIC EQUATIONS

Example 20

Solve the equation $3 \sin 2\theta = 1.5$, $0 \le \theta \le \pi$.

Solution

$$3\sin 2\theta = 1.5$$

$$\therefore \sin 2\theta = 0.5$$

 $0 \le \theta \le \pi$ means that $0 \le 2\theta \le 2\pi$:

$$2\theta = \frac{\pi}{6}, \frac{5\pi}{6}$$

Hence:
$$\theta = \frac{\pi}{12}, \frac{5\pi}{12}$$

This solution can be checked graphically by using graphing software to find the intersection of $y = 3 \sin 2\theta$ and y = 1.5. Over the domain $0 \le \theta \le \pi$ these functions intersect only twice. If the domain is increased, there will be two more intersections for each domain increase of π units.

Example 21

Solve the equation
$$\cos\left(2x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$
, $0 \le x \le 2\pi$.

Solution

Let
$$\theta = 2x - \frac{\pi}{6}$$
: $\cos \theta = \frac{\sqrt{3}}{2}$

Hence:
$$\theta = \dots - \frac{11\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{11\pi}{6}, 2\pi + \frac{\pi}{6}, 2\pi + \frac{11\pi}{6}, \dots$$

From the limits:
$$0 \le x \le 2\pi$$

$$0 \le 2x \le 4\pi$$

But
$$2x = \theta + \frac{\pi}{6}$$
: $0 \le \theta + \frac{\pi}{6} \le 4\pi$

$$-\frac{\pi}{6} \le \theta \le 4\pi - \frac{\pi}{6}$$

$$\theta = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{11\pi}{6}, 2\pi + \frac{\pi}{6}, 2\pi + \frac{11\pi}{6}$$

$$\therefore 2x - \frac{\pi}{6} = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{11\pi}{6}, 2\pi + \frac{\pi}{6}, 2\pi + \frac{11\pi}{6}$$

$$2x = 0, \frac{\pi}{3}, 2\pi, \frac{7\pi}{3}, 4\pi$$

$$x = 0, \frac{\pi}{6}, \pi, \frac{7\pi}{6}, 2\pi$$

SIMPLE TRIGONOMETRIC EQUATIONS

Example 22

Find the values of x for which $\cos 2x \le \frac{1}{\sqrt{2}}$, $0 \le x \le 2\pi$.

Solution

First solve the equation, then solve the inequality graphically.

Solve the equation:
$$\cos 2x = \frac{1}{\sqrt{2}}$$
 $(0 \le x \le 2\pi)$
$$2x = \frac{\pi}{4}, \frac{7\pi}{4}, 2\pi + \frac{\pi}{4}, 2\pi + \frac{7\pi}{4} \quad \text{(as } 0 \le 2x \le 4\pi \text{, around the circle twice)}$$
$$x = \frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8}$$

Now sketch the graph of $y = \cos 2x$ for $0 \le x \le 2\pi$, showing the line $y = \frac{1}{\sqrt{2}}$ also:

Use the diagram to find where the graph of $y = \cos 2x$ is on or below the line $y = \frac{1}{\sqrt{2}}$. Hence $\cos 2x \le \frac{1}{\sqrt{2}}$ for $\frac{\pi}{8} \le x \le \frac{7\pi}{8}$ and for $\frac{9\pi}{8} \le x \le \frac{15\pi}{8}$.

