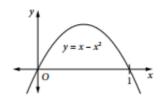
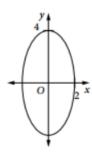

1 Find the volume of the solid of revolution formed by rotating about the x-axis the arc of the parabola $y = x^2$ between x = 0 and x = 3.


- 3 A cone is formed by rotating about the *x*-axis a segment of the line y = 3x between x = 0 and x = 4. The definite integral used to calculate the volume of this solid is:

- A $\int_0^4 9x^2 dx$ B $\pi \int_0^4 3x^2 dx$ C $\int_0^4 3x^2 dx$ D $\pi \int_0^4 9x^2 dx$

- 4 (a) Find the equation of the line passing through the points (1,0) and (3,4).
 - **(b)** A cone is formed by rotating about the *x*-axis the segment of the line joining the points (1,0) and (3,4). Calculate the volume of the cone.


6 The region bounded by the parabola $y = x - x^2$ and the *x*-axis is rotated about the *x*-axis. Find the volume of the solid formed.

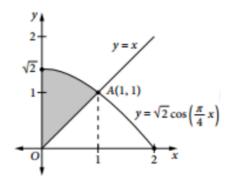
7 Find the volume of the solid formed when the region bounded by the parabola $y = 1 - x^2$ and the *x*-axis is rotated about: (a) the *x*-axis (b) the *y*-axis.

13	A hemispherical bowl of radius a units is filled with water to a depth of $\frac{a}{2}$ units. Use integration to find the volume of the water.

- **18** Find the volume of the solid formed when the ellipse $4x^2 + y^2 = 16$ is rotated about:
 - (a) the x-axis
- (b) the y-axis.

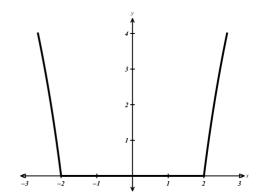
20 The region bounded by the curve xy = 1, the x-axis and the lines x = 1 and x = a, for a > 1, is rotated about the x-axis. Find V, the volume generated. Hence find $\lim V$.

	VOLUMES OF SOLIDS OF REVOLUTION
25	The area under the curve $y = e^{-x}$ between $x = 0$ and $x = 1$ is rotated about the <i>x</i> -axis. Find the volume of the solid of revolution.
27	Find the volume generated when the curve $y = e^{-0.5x}$, $-2 \le x \le 2$, is rotated about the <i>x</i> -axis.


- **29** (a) Find the area of the region bounded by the curve $y = e^{-x}$, the coordinate axes and the line x = a, a > 0.
 - (b) Find the limit of this area as $a \to \infty$.
 - (c) Find the volume of the solid generated by rotating the region in (a) about the x-axis and find the limit of this volume as a → ∞.

31 Find the volume of the solid generated by rotating about the *x*-axis the area beneath the curve $y = \frac{1}{\sqrt{x-2}}$ between x = 6 and x = 11.

- 37 (a) Sketch the region bounded by the curves $y = 2(x^2 1)$ and $y = 1 x^2$.
 - (b) Calculate the area of the shaded region.
 - (c) The region bounded by the y-axis and the curves $y = 2(x^2 1)$ and $y = 1 x^2$ for $x \ge 0$, is rotated about the y-axis. Calculate the volume of the solid of revolution generated.


38 The curve $y = \sqrt{2}\cos\left(\frac{\pi}{4}x\right)$ meets the line y = x at the point A(1, 1), as shown in the diagram.

- (a) Find the exact value of the shaded area.
- (b) The shaded area is rotated about the x-axis. Calculate the volume of the solid of revolution formed.
- (c) The shaded area is rotated about the y-axis. Write the integral for this volume.
- (d) By using a combination of exact integration and the trapezoidal rule, as appropriate, calculate the volume of the solid in (C).

42 A bowl is formed by rotating the curve $y = 8 \ln(x - 1)$ about the y-axis for $0 \le y \le 4$.

Calculate the capacity of the bowl, giving your answer to one decimal place.

