- **1** Given that (z+2-i) is a factor, factorise $z^4+4z^3+3z^2-8z-10$ over:
 - (a) the set of real numbers
- (b) the set of complex numbers.

2 Solve the following for *z* as a complex number.

(a)
$$z^2 - 4z + 8 = 0$$

(a)
$$z^2 - 4z + 8 = 0$$
 (b) $z^3 + 2z^2 - 2z + 3 = 0$ (c) $z^6 + 7z^3 - 8 = 0$

(c)
$$z^6 + 7z^3 - 8 = 0$$

3 Solve $z^3 + z^2 + 3z - 5 = 0$ for z as (a) a real number (b) a complex number.

4 Solve $z^5 + 3z^4 - z - 3 = 0$ for z as a real number.

- **5** What are the roots of $z^4 2z^3 z + 2 = 0$ for z as a complex number?

 - **A** 1, 2 **B** 1, 2, $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$
- C -1, -2 D -1, -2, $\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$

6 Find the values of the real numbers a and b such that 1 + i is a root of the equation $z^3 + az + b = 0$.

8 Solve $3z^3 - 4z^2 - 13z - 6 = 0$ for z if z is a real number.

9 Solve $z^4 - z^3 + 6z^2 - z + 15 = 0$ for z given that z = 1 - 2i is a root of the equation.

- 12 Write an equation of the lowest possible degree with (i) complex coefficients (ii) rational coefficients that includes the following among its roots.

 - (a) 2, 1 + i (b) $\sqrt{3} + 1$, 2 i

16 Find the real numbers k such that z = ki is a root of the equation $z^3 + (2+i)z^2 + (2+2i)z + 4 = 0$. Hence, or otherwise, find the three roots of the equation.

- 17 Solve the following equations using a calculus method.
 - (a) $z^4 + 4z^3 + 5z^2 + 4z + 4 = 0$, given that it has a root of multiplicity 2.

18 If *z* is a complex number, solve $z^4 - 2z^2 + 9 = 0$, given that $1 + 2\sqrt{2}i = (\sqrt{2} + i)^2$.