QUESTION **4** Complete the following.

a If
$$1^2 = 1$$
 then $\sqrt{1} =$

o If
$$2^2 = 4$$
 then $\sqrt{4} =$ _____

b If
$$2^2 = 4$$
 then $\sqrt{4} =$ **c** If $3^2 = 9$ then $\sqrt{9} =$

d If
$$4^2 = 16$$
 then $\sqrt{16} =$

e If
$$5^2 = 25$$
 then $\sqrt{25} =$ _____

d If
$$4^2 = 16$$
 then $\sqrt{16} =$ _____ e If $5^2 = 25$ then $\sqrt{25} =$ ____ f If $6^2 = 36$ then $\sqrt{36} =$ ____

g If
$$1^3 = 1$$
 then $\sqrt[3]{1} =$ **h** If $2^3 = 8$ then $\sqrt[3]{8} =$ **i** If $3^3 = 27$ then $\sqrt[3]{27} =$ _____

h If
$$2^3 = 8$$
 then $\sqrt[3]{8} =$

i If
$$3^3 = 27$$
 then $\sqrt[3]{27} =$

QUESTION **3** Evaluate the following.

a
$$\sqrt{16} =$$

b
$$\sqrt{49} =$$

$$c \sqrt{4} =$$

d
$$\sqrt{64} =$$

$$e^{-\sqrt{81}} =$$

$$f \sqrt{36} =$$

$$\mathbf{g} = \sqrt{100} =$$

$$h \sqrt{9} =$$

i
$$\sqrt[3]{8} =$$

$$\mathbf{j} = \sqrt[3]{64} =$$

$$k \sqrt[3]{125} =$$

$$1 \sqrt[3]{27} =$$

$$m \sqrt{25} =$$

$$\mathbf{m} \quad \sqrt{25} =$$
 $\mathbf{p} \quad \sqrt[3]{1000} =$ $\mathbf{p} \quad \sqrt[3]{1000} =$

$$\mathbf{p} = \sqrt[3]{1000} = \underline{}$$

$$(\sqrt{3})^2 =$$

$$\mathbf{s} \quad \left(\sqrt{5}\right)^2 = \underline{}$$

$$(\sqrt{3})^2 =$$
 $(\sqrt{4})^2 =$ $(\sqrt{5})^2 =$ $(\sqrt{6})^2 =$

Calculate the square roots WITHOUT the calculator 1)

a
$$\sqrt{4} =$$

b
$$\sqrt{49} =$$

$$c \sqrt{81} =$$

d
$$\sqrt{16} =$$

$$e \sqrt{4} + \sqrt{64} =$$

f
$$\sqrt{225} =$$

g
$$\sqrt{121} =$$

h
$$\sqrt{25} \times \sqrt{36} =$$

$$\mathbf{i} \quad \sqrt{9} \times \sqrt{16} =$$

$$j \sqrt{169} =$$

$$k \sqrt{625} \div \sqrt{25} =$$

$$\sqrt{676} - \sqrt{625} =$$

Calculate these cubic roots WITHOUT the calculator 2)

a
$$\sqrt[3]{27} =$$

b
$$\sqrt[3]{343} \times \sqrt[3]{8} =$$

$$c$$
 $\sqrt[3]{1000} \div \sqrt[3]{8} =$

d
$$\sqrt[3]{8} =$$

e
$$\sqrt[3]{729} \times \sqrt[3]{27} =$$

f
$$\sqrt[3]{1331} \times \sqrt[3]{64} =$$

$$g^{3\sqrt{64}} =$$

h
$$\sqrt[3]{8} \times \sqrt[3]{729} =$$

$$i \sqrt[3]{1.728} \times \sqrt{3.43} =$$

$$j$$
 $\sqrt[3]{125} =$ _____

$$k \sqrt[3]{64} \times \sqrt[3]{125} =$$

$$\sqrt[3]{6.4} + \sqrt[3]{8.1} =$$

Using a calculator, evaluate the following.

9 Without a calculator, evaluate the following. Then use a calculator to check your answers.

a
$$3^2 + 5^2 - \sqrt{16}$$

$$8^2 - 0^2 + 1^2$$

e
$$\sqrt{5^2-3^2}$$

g
$$6^2 \div 2^2 \times 3^2$$

$$\sqrt{12^2 + 5^2}$$

$$\sqrt{\frac{9-5}{9}}$$

b
$$4 \times 4^2$$

d
$$1^2 \times 2^2 \times 3^2$$

f
$$\sqrt{81} - 3^2$$

$$h \quad \sqrt{9} \times \sqrt{64} \div \sqrt{36}$$

$$\int \sqrt{\frac{100 - 64}{9}}$$

$$\sqrt{\frac{28+4}{28+22}}$$

12 List all the square numbers between 101 and 200. Hint: There are only four.

Exercise 5: Fill the table below (the first one has been done for you)

	Prime factorisation	Square root
36	6^2	6
121		
900		
676		
1089		