- 1 (a) Express $2\sqrt{3}\cos\left(\theta + \frac{\pi}{6}\right) 2\cos\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. (b) Hence, or otherwise, solve $2\sqrt{3}\cos\left(\theta + \frac{\pi}{6}\right) 2\cos\theta = 1$ for $0 < \theta < 2\pi$.

- 2 (a) Express $3\sin x + 4\cos x$ in the form $r\sin(x+\alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$.
 - (b) Hence, or otherwise, solve $3\sin x + 4\cos x = 5$ for $0 \le x \le 2\pi$. Give answer(s) to two decimal places.
 - (c) Write the general solution for $3\sin x + 4\cos x = 5$.

3 Use $\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$ to find the exact value of $\tan \frac{\pi}{8}$.

4. First show that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ [by expanding $\cos 3\theta$ as $\cos (2\theta + \theta)$]

Show that the cubic equation $8x^3 - 6x + 1 = 0$ can be reduced to the form $\cos 3\theta = \frac{-1}{2}$ by substituting $x = \cos \theta$, and then solve this equation.

From this, deduce the following:

a)
$$\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) = 0$$

b) $\sec\left(\frac{2\pi}{9}\right) s$
c) $\sec\left(\frac{2\pi}{9}\right) + sec\left(\frac{4\pi}{9}\right) + sec\left(\frac{8\pi}{9}\right) = 6$
d) $\tan^2\left(\frac{2\pi}{9}\right)$

b)
$$\sec\left(\frac{2\pi}{9}\right)\sec\left(\frac{4\pi}{9}\right)\sec\left(\frac{8\pi}{9}\right) = -8$$

d) $\tan^2\left(\frac{2\pi}{9}\right) + \tan^2\left(\frac{4\pi}{9}\right) + \tan^2\left(\frac{8\pi}{9}\right) = 33$

5 It can be shown that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. Use this result to solve $\cos 3\theta + \cos 2\theta + \cos \theta = 0$ for $0 \le \theta \le 2\pi$.

6 (a) Expand $\cos(2A + B)$ and hence prove that $\frac{1}{4}\cos 3\theta = \cos^3 \theta - \frac{3}{4}\cos \theta$.

(b) By writing $x = k \cos \theta$ and giving k a suitable value, use the formula proved in part (a) to find the three roots of the equation $27x^3 - 9x = 1$. Hence write the value of the product $\cos \frac{\pi}{9} \cos \frac{3\pi}{9} \cos \frac{5\pi}{9} \cos \frac{7\pi}{9}$.

7 If $\tan \alpha$, $\tan \beta$, $\tan \gamma$ are the roots of the equation $x^3 - (a+1)x^2 + (c-a)x - c = 0$, show that $\alpha + \beta + \gamma = n\pi + \frac{\pi}{4}$.

8 Solve sin $x = \cos 5x$ for $0 < x < \pi$.

- 9 (a) Find A and B in terms of x and y such that $\sin x + \sin y = 2 \sin A \cos B$.
 - **(b)** Find the solution of $\sin \theta + \sin 2\theta + \sin 3\theta = 0$ for $0 \le \theta \le \pi$.