The work that follows requires you to be able to visualise objects in three-dimensional space. You need to be able to draw cubes and rectangular prisms with some of the edges forming the axes of the Cartesian system.

To describe the position of a point in three-dimensional space, you need three coordinates. The Cartesian system of two coordinates, *X* and *Y*, is extended by means of a third axis, *OZ*, which is perpendicular to the plane *OXY*. The positive direction of *OZ* is towards the top of the page, the positive direction of *OX* is out of the page and the positive direction of *OY* is horizontally to the right.

This is shown in the diagram on the right. It is called a right-hand system of axes. Here, the fingers of the right hand point in the direction from the positive *x*-axis to the positive *y*-axis, so that the thumb points upwards in the direction of the positive *z*-axis.

In the following diagram, the x-y plane is horizontal, the x-z and y-z planes are vertical. In this *OXYZ* system, the points A(1, 2, 3) and B(2, 1, 3) are shown.

The vector \overrightarrow{OA} may be written as $\overrightarrow{OA} = (1, 2, 3)$, $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ or $\overrightarrow{OA} = \underline{a}$, as well as in component form.

The components of a vector in three dimensions use \underline{i} , \underline{j} and \underline{k} as the unit vectors parallel to the x, y and z axes respectively.

Thus
$$\overrightarrow{OA} = \underline{a} = \underline{i} + 2\underline{j} + 3\underline{k}$$
 and $\overrightarrow{OB} = \underline{b} = 2\underline{i} + \underline{j} + 3\underline{k}$.

Using your knowledge of two-dimensional vectors, it should seem reasonable to find \overrightarrow{AB} .

$$\overline{AB} = \underline{b} - \underline{a} = \left(2\underline{i} + \underline{j} - 3\underline{k}\right) - \left(\underline{i} + 2\underline{j} + 3\underline{k}\right)$$
$$= (2 - 1)\underline{i} + (1 - 2)\underline{j} + (3 - 3)\underline{k}$$
$$= \underline{i} - \underline{j}$$

 \overrightarrow{AB} has no k component, so it lies in a plane that is parallel to the x-y plane. It is the plane given by the equation z=3. In particular, points in the x-y plane are of the form (x, y, 0), points in the y-z plane are of the form (x, y, 0) and points in the x-z plane are of the form (x, 0, z).

In two-dimensional space, the coordinate axes divide the plane into four regions or quadrants. In three-dimensional space, the coordinate axes divide the space into eight regions or octants. The sign of the coordinates indicates in which octant the point is located.

Example 1

2

Given $\underline{a} = -1$, $\underline{b} = (-1, 3, 2)$ and $\underline{c} = \underline{i} + 2\underline{j} - 3\underline{k}$, find each of the following vectors,

expressing your answer in component form.

(a)
$$a + b + c$$

(b)
$$a - b + c$$

(c)
$$a - b - c$$

(e)
$$a - 2b + 3a$$

Solution

The answers are to be given in component form, so rewrite each vector in component form.

$$\underline{a} = 2\underline{i} - j + 4\underline{k}, \ \underline{b} = -\underline{i} + 3j + 2\underline{k}, \ \underline{c} = \underline{i} + 2j - 3\underline{k}.$$

(a)
$$\underline{a} + \underline{b} + \underline{c} = 2\underline{i} - \underline{j} + 4\underline{k} + \left(-\underline{i} + 3\underline{j} + 2\underline{k}\right) + \underline{i} + 2\underline{j} - 3\underline{k}$$

= $2\underline{i} + 4\underline{j} + 3\underline{k}$

(b)
$$\underline{a} - \underline{b} + \underline{c} = 2\underline{i} - \underline{j} + 4\underline{k} - \left(-\underline{i} + 3\underline{j} + 2\underline{k}\right) + \underline{i} + 2\underline{j} - 3\underline{k}$$

 $= 2\underline{i} - \underline{j} + 4\underline{k} + \underline{i} - 3\underline{j} - 2\underline{k} + \underline{i} + 2\underline{j} - 3\underline{k}$
 $= 4\underline{i} - 2\underline{j} - \underline{k}$

(c)
$$\underline{a} - \underline{b} - \underline{c} = 2\underline{i} - \underline{j} + 4\underline{k} - \left(-\underline{i} + 3\underline{j} + 2\underline{k}\right) - \left(\underline{i} + 2\underline{j} - 3\underline{k}\right)$$
 (d) $4\underline{a} = 4\left(2\underline{i} - \underline{j} + 4\underline{k}\right)$

$$= 2\underline{i} - \underline{j} + 4\underline{k} + \underline{i} - 3\underline{j} - 2\underline{k} - \underline{i} - 2\underline{j} + 3\underline{k}$$

$$= 2\underline{i} - 6\underline{j} + 5\underline{k}$$

(e)
$$\underline{a} - 2\underline{b} + 3\underline{c} = 2\underline{i} - \underline{j} + 4\underline{k} - 2(-\underline{i} + 3\underline{j} + 2\underline{k}) + 3(\underline{i} + 2\underline{j} - 3\underline{k})$$

 $= 2\underline{i} - \underline{j} + 4\underline{k} + 2\underline{i} - 6\underline{j} - 4\underline{k} + 3\underline{i} + 6\underline{j} - 9\underline{k}$
 $= 7\underline{i} - \underline{j} - 9\underline{k}$

Magnitude of vectors in three-dimensional space

To obtain the magnitude of vectors in three-dimensional space you use an extension of Pythagoras' theorem. This is similar to the method used to find the length of a diagonal of a cuboid in solid geometry.

Suppose you wish to find the length of the line segment joining $A(x_1, y_1, z_1)$ to $B(x_2, y_2, z_2)$, as shown in the diagram.

Construct the planes ACD and CDB that are parallel to the x-y and x-z planes respectively. Then C, which has the same x and z coordinates as A, will be $C(x_1, y_2, z_1)$, while D, which has the same x and y coordinates as B, will be $D(x_2, y_2, z_1)$.

Now
$$|\overrightarrow{AB}|^2 = |\overrightarrow{AD}|^2 + |\overrightarrow{DB}|^2$$

$$= |\overrightarrow{AC}|^2 + |\overrightarrow{CD}|^2 + |\overrightarrow{DB}|^2$$
And $|\overrightarrow{AC}| = |y_2 - y_1|$

$$|\overrightarrow{CD}| = |x_2 - x_1|$$

$$|\overrightarrow{DB}| = |z_2 - z_1|$$

Hence,
$$|\overrightarrow{AB}|^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$
 and thus $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

Referring to diagram on page 79:

$$|\overrightarrow{OA}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$|\overrightarrow{OB}| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$$

$$|\overrightarrow{AB}| = \sqrt{(2-1)^2 + (1-2)^2 + (3-3)^2} = \sqrt{2}$$

Unit vectors in three-dimensional space

Given $\overrightarrow{OA} = \underline{a} = \underline{i} + 2\underline{j} + 3\underline{k}$ and $\overrightarrow{OB} = \underline{b} = 2\underline{i} + \underline{j} + 3\underline{k}$, then since $|\overrightarrow{OA}| = \sqrt{14}$ and $|\overrightarrow{OB}| = \sqrt{14}$, the corresponding unit vectors can be found using the fact that $\hat{\underline{a}} = \frac{\underline{a}}{|\underline{a}|}$.

$$\hat{\underline{a}} = \frac{1}{\sqrt{14}} \left(\underline{i} + 2\underline{j} + 3\underline{k} \right) = \frac{\sqrt{14}}{14} \left(\underline{i} + 2\underline{j} + 3\underline{k} \right) \text{ and } \hat{\underline{b}} = \frac{1}{\sqrt{14}} \left(2\underline{i} + \underline{j} + 3\underline{k} \right) = \frac{\sqrt{14}}{14} \left(2\underline{i} + \underline{j} + 3\underline{k} \right).$$

Thus $\hat{\underline{a}} = \frac{\sqrt{14}}{14} \left(\underline{i} + 2\underline{j} + 3\underline{k} \right)$ is the unit vector parallel to \overrightarrow{OA} and $\hat{\underline{b}} = \frac{\sqrt{14}}{14} \left(2\underline{i} + \underline{j} + 3\underline{k} \right)$ is the unit vector parallel to \overrightarrow{OB} .

From the given vectors \overrightarrow{OA} and \overrightarrow{OB} you found that $\overrightarrow{AB} = \underline{i} - \underline{j}$ and that $|\overrightarrow{AB}| = \sqrt{2}$ so the unit vector parallel to \overrightarrow{AB} is given by $\frac{\sqrt{2}}{2}(\underline{i} - \underline{j})$. Since this vector does not contain a \underline{k} component, it lies in a plane parallel to the x-y plane.

Example 2

- (a) On a set of Cartesian axes, mark the terminal points A(1, 3, 4), B(-1, 3, 2) of vectors \overrightarrow{OA} , \overrightarrow{OB} .
- (b) Write the vectors $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$, in terms of \underline{i} , j, \underline{k} . Similarly, write an expression for $\underline{e} = \underline{b} \underline{a}$.
- (c) Find the magnitudes of vectors a, b, e.
- (d) Find unit vectors in the direction of the vectors given in part (c).

Solution

(a)

Note: (i) a points out from the page upwards towards the reader.

(ii) b points into the page.

(b)
$$\underline{a} = \underline{i} + 3\underline{j} + 4\underline{k}, \ \underline{b} = -\underline{i} + 3\underline{j} + 2\underline{k}, \ \underline{e} = \overline{AB} = -\underline{i} + 3\underline{j} + 2\underline{k} - (\underline{i} + 3\underline{j} + 4\underline{k}) = -2\underline{i} - 2\underline{k}.$$

(c)
$$|\underline{a}| = \sqrt{1+9+16} = \sqrt{26}, |\underline{b}| = \sqrt{1+9+4} = \sqrt{14}, |\underline{e}| = \sqrt{4+4} = 2\sqrt{2}.$$

(d)
$$\hat{a} = \frac{\sqrt{26}}{26} (\underline{i} + 3\underline{j} + 4\underline{k}), \hat{b} = \frac{\sqrt{14}}{14} (-\underline{i} + 3\underline{j} + 2\underline{k}), \hat{e} = \frac{\sqrt{2}}{4} (-\underline{i} - \underline{k}).$$

Position vectors in three dimensions

A **vector** defines the position of one point relative to another point. When the reference point is the origin, the vector is simply called a 'position vector'. When the reference point is not the origin, the term **relative position vector** is used.

Given the position vector of A is $\underline{a} = \underline{i} + 3\underline{j} + 4\underline{k}$ and the position vector of B is $\underline{b} = -\underline{i} + 3\underline{j} + 2\underline{k}$, the position vector of B relative to A (i.e. B as seen from A) is

$$\overline{AB} = \overline{AO} + \overline{OB}$$

$$= \overline{OB} - \overline{OA} = \underline{b} - \underline{a}$$

$$= -2i - 2k.$$

The position vector of A relative to B (i.e. A as seen from B) is $\overrightarrow{BA} = 2\underline{i} + 2\underline{k}$.

Note that the position vector of B relative to A = position vector of B – position vector of A.

Algebra of vectors expressed in component form

- (i) Equality: Two vectors are equal if and only if the corresponding components are equal; i.e. a₁<u>i</u> + b₁<u>j</u> + c₁<u>k</u> = a₂<u>i</u> + b₂<u>j</u> + c₂<u>k</u> if and only if a₁ = a₂, b₁ = b₂, c₁ = c₂.
 (This is true because the <u>i</u>, j, <u>k</u> representation of a vector is unique.)
- (ii) The components of the sum (difference) of two vectors are equal to the sum (difference) of the corresponding components of the vectors;
 e.g. If \$\alpha = x_1\tilde{t} + y_1\tilde{j} + z_1\tilde{k}\$ and \$\bar{b} = x_2\tilde{t} + y_2\tilde{j} + z_2\tilde{k}\$, then \$\alpha \pm b = (x_1 \pm x_2)\tilde{t} + (y_1 \pm y_2)\tilde{j} + (z_1 \pm z_2)\tilde{k}\$.
- (iii) The components of a scalar multiple of a vector are equal to the scalar multiple of the corresponding components of the vector; e.g. If a = xi + yj + zk and $\lambda \in \mathbb{R}$, then $\lambda a = (\lambda x)i + (\lambda y)j + (\lambda z)k$.

Example 3

Given A(6, 4, 8) and B(10, 6, 8) show that \overline{AB} is parallel to the x-y plane.

Solution

$$\overline{AB} = (10-6)\underline{i} + (6-4)\underline{j} + (8-8)\underline{k}$$

= $4\underline{i} + 2\underline{j}$

Since \overline{AB} has no \underline{k} component, it is parallel to the x-y plane.

Example 4

Determine whether the points A(0, 2, 2), B(4, 10, 18), C(6, 14, 26) are collinear.

Solution

$$\overrightarrow{AB} = (4-0)\underline{i} + (10-2)\underline{j} + (18-2)\underline{k}
= 4\underline{i} + 8\underline{j} + 16\underline{k}
= 4(\underline{i} + 2\underline{j} + 4\underline{k})$$

$$\overrightarrow{BC} = (6-4)\underline{i} + (14-10)\underline{j} + (26-18)\underline{k}
= 2\underline{i} + 4\underline{j} + 8\underline{k}
= 2(\underline{i} + 2\underline{j} + 4\underline{k})$$

Hence $\overline{AB} = 2\overline{BC}$.

Thus \overrightarrow{AB} and \overrightarrow{BC} are parallel and have point B in common.

Hence ABC is a straight line and the points A, B and C are collinear.

Example 5

Find the distance of the point P(2, 3, 5):

(a) from the y-z plane

(b) from the x-axis.

Solution

- (a) The line segment from *P* normal to the *y-z* plane intersects the *y-z* plane at Q(0, 3, 5). Hence $|\overrightarrow{PQ}| = |0 - 2| = 2$.
- (b) The line segment from P perpendicular to the x-axis meets the x-axis at R(2, 0, 0). Thus $|\overrightarrow{PR}| = \sqrt{0^2 + 3^2 + 5^2} = \sqrt{34}$.