FIRST PRINCIPLE OF DIFFERENTIATION

On the graph below, we draw the secant to the graph between two points of this graph, i.e. the point (x, f(x)) and another point a bit further away, at a distance *h* from the first point, so its coordinates are (x + h, f(x + h))

The ratio $\frac{f(x+h)-f(x)}{(x+h)-x}$, which simplifies as $\frac{f(x+h)-f(x)}{h}$, represents the gradient of the line joining the points (x, f(x)) and (x + h, f(x + h)).

When *h* becomes smaller and smaller (i.e. tends towards 0), the value of the ratio $\frac{f(x+h)-f(x)}{h}$ tends towards the gradient of the tangent to the curve. This value is called "**the derivative of the function** *f* at *x*", and is noted either f'(x) ("Lagrange notation"; Lagrange was a French mathematician) or $\frac{df}{dx}$ ("Leibniz notation"; Leibniz was a German mathematician)

So: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ this calculation is called "first principle of differentiation"

Example of such calculation for $f(x) = x^2$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2hx - h^2 - x^2}{h} = \lim_{h \to 0} \frac{2hx - h^2}{h} = \lim_{h \to 0} (2x-h) = 2x$$

So when $f(x) = x^2$, then $f'(x) = 2x$ (can also be noted: $\frac{df(x)}{dx} = 2x$)

What it means is that the gradient of the curve $f(x) = x^2$ at a point x = c is f'(c) = 2c

For example, the gradient of the curve $f(x) = x^2$ at x = 1 is $f'(1) = 2 \times 1 = 2$

DERIVATIVES OF THE FUNCTIONS f(x) = c, f(x) = x AND $f(x) = x^2$

Derivative of a constant function f(x) = c

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$ If f(x) = cTherefore if f(x) = c then f'(x) = 0

> Example: if f(x) = 3then f'(x) = 0

Derivative of the function f(x) = x

If
$$f(x) = x$$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1$
Therefore if $f(x) = x$ then $f'(x) = 1$

Derivative of the function $f(x) = x^2$

If
$$f(x) = x^2$$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$
 $f'(x) = \lim_{h \to 0} \left(\frac{x^2 + 2xh + h^2 - x^2}{h}\right)$
 $f'(x) = \lim_{h \to 0} \left(\frac{2xh + h^2}{h}\right)$
 $f'(x) = \lim_{h \to 0} (2x + h)$

Therefore if $f(x) = x^2$

then f'(x) = 2x