SQUARE ROOT The square root of a number is the positive number which multiplied by itself, produces the given number. The symbol for "square root" is $\sqrt{}$ Example: $$2 \times 2 = 4$$ therefore $\sqrt{4} = 2$ $$3 \times 3 = 9$$ therefore $\sqrt{9} = 3$ Finding a square root of a number is the opposite of squaring this number. $$\left(\sqrt{x}\right)^2 = x$$ and $\sqrt{x^2} = x$ # PERFECT SQUARES AND COMMON SQUARE ROOTS Numbers such as 2^2 , 3^2 , 4^2 , 5^2 , 6^2 , etc are known as perfect squares. ## The first 12 square numbers are: | Index form | 12 | 2 ² | 3 ² | 4 ² | 5 ² | 6 ² | 7 ² | 8 ² | 9 ² | 10 ² | 11 ² | 12 ² | |---------------|----|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------|-----------------|-----------------| | Basic numeral | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | ## A list of common square roots are: | Square root form | √1 | $\sqrt{4}$ | √9 | √ 16 | √ 25 | √36 | √ 49 | √64 | √81 | √100 | √ 121 | √ 144 | |------------------|----|------------|----|-----------------|-------------|-----|-----------------|-----|-----|------|------------------|------------------| | Basic numeral | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ## **CUBIC ROOT** The cubic root of a number is the positive number which multiplied by itself twice, produces the given number. The symbol for "cubic root" is $\sqrt[3]{}$ Example: $$2 \times 2 \times 2 = 8$$ therefore $\sqrt[3]{8} = 2$ $3 \times 3 \times 3 = 27$ therefore $\sqrt[3]{27} = 3$ Finding a cubic root of a number is the opposite of cubing this number. $$\left(\sqrt[3]{x}\right)^3 = x \quad \text{and} \quad \sqrt[3]{x^3} = x$$ # **SQUARE AND CUBIC ROOTS - EXAMPLES** ## Evaluate: a $$3^3 - \sqrt{9} + 1^2$$ **b** $$\sqrt{8^2 + 6^2}$$ c $$\sqrt[3]{\frac{100-28}{9}}$$ #### SOLUTION $$3^3 - \sqrt{9} + 1^2 = 27 - 3 + 1$$ $$= 25$$ $$\sqrt[3]{\frac{100 - 28}{9}} = \sqrt[3]{\frac{72}{9}} \\ = \sqrt[3]{8} \\ = 2$$ ### **EXPLANATION** $$3^3 = 3 \times 3 \times 3, \sqrt{9} = 3, 1^2 = 1 \times 1$$ $$8^2 = 8 \times 8, 6^2 = 6 \times 6$$ $\sqrt{100} = 10$ Simplify the fraction first.