SQUARE ROOT

The square root of a number is the positive number which multiplied by itself, produces the given number.

The symbol for "square root" is $\sqrt{}$

Example:
$$2 \times 2 = 4$$
 therefore $\sqrt{4} = 2$

$$3 \times 3 = 9$$
 therefore $\sqrt{9} = 3$

Finding a square root of a number is the opposite of squaring this number.

$$\left(\sqrt{x}\right)^2 = x$$
 and $\sqrt{x^2} = x$

PERFECT SQUARES AND COMMON SQUARE ROOTS

Numbers such as 2^2 , 3^2 , 4^2 , 5^2 , 6^2 , etc are known as perfect squares.

The first 12 square numbers are:

Index form	12	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²	10 ²	11 ²	12 ²
Basic numeral	1	4	9	16	25	36	49	64	81	100	121	144

A list of common square roots are:

Square root form	√1	$\sqrt{4}$	√9	√ 16	√ 25	√36	√ 49	√64	√81	√100	√ 121	√ 144
Basic numeral	1	2	3	4	5	6	7	8	9	10	11	12

CUBIC ROOT

The cubic root of a number is the positive number which multiplied by itself twice, produces the given number.

The symbol for "cubic root" is $\sqrt[3]{}$

Example:
$$2 \times 2 \times 2 = 8$$
 therefore $\sqrt[3]{8} = 2$
 $3 \times 3 \times 3 = 27$ therefore $\sqrt[3]{27} = 3$

Finding a cubic root of a number is the opposite of cubing this number.

$$\left(\sqrt[3]{x}\right)^3 = x \quad \text{and} \quad \sqrt[3]{x^3} = x$$

SQUARE AND CUBIC ROOTS - EXAMPLES

Evaluate:

a
$$3^3 - \sqrt{9} + 1^2$$

b
$$\sqrt{8^2 + 6^2}$$

c
$$\sqrt[3]{\frac{100-28}{9}}$$

SOLUTION

$$3^3 - \sqrt{9} + 1^2 = 27 - 3 + 1$$
$$= 25$$

$$\sqrt[3]{\frac{100 - 28}{9}} = \sqrt[3]{\frac{72}{9}} \\
= \sqrt[3]{8} \\
= 2$$

EXPLANATION

$$3^3 = 3 \times 3 \times 3, \sqrt{9} = 3, 1^2 = 1 \times 1$$

$$8^2 = 8 \times 8, 6^2 = 6 \times 6$$

 $\sqrt{100} = 10$

Simplify the fraction first.