1 Express the following angles in radians.

a 90°

b 45°

c 30°

d 60°

e 120°

f 150°

g 135°

h 225°

i 360°

300°

k 270°

I 210°

2 Express the following angles in degrees.

a π

b 2π

c 4π

 $\frac{5\pi}{6}$

 $\mathbf{m} \ \frac{11\pi}{6}$

 7π

5 Find the exact value of:

a $\sin \frac{\pi}{6}$

b $\sin \frac{\pi}{4}$

 $\cos \frac{\pi}{6}$

d $\tan \frac{\pi}{3}$

e $\tan \frac{3\pi}{4}$

f $\cos \frac{5\pi}{3}$

g $\sin \frac{5\pi}{4}$

h $\tan \frac{7\pi}{6}$

7 Express these angles in radians in terms of π :

a 20°

b 22.5°

c 36°

 $d 100^{\circ}$

e 112.5°

f 252°

8 Express these angles in degrees:

b $\frac{2\pi}{5}$ **c** $\frac{20\pi}{9}$ **d** $\frac{11\pi}{8}$ **e** $\frac{17\pi}{10}$

- **9 a** Find the complement of $\frac{\pi}{6}$.
 - **b** Find the supplement of $\frac{\pi}{6}$.
- **10** Two angles of a triangle are $\frac{\pi}{3}$ and $\frac{2\pi}{9}$. Find, in radians, the third angle.

1 Find, in radians, the acute angle θ that satisfies each equation.

a
$$\tan \theta = 1$$

$$\mathbf{b} \quad \sin \theta = \frac{1}{2}$$

$$\mathbf{c} \quad \cos \theta = \frac{1}{\sqrt{2}}$$

$$d \tan \theta = \frac{1}{\sqrt{3}}$$

$$e \sin \theta = \frac{\sqrt{3}}{2}$$

$$f \cos \theta = \frac{1}{2}$$

3 Solve these equations for x over the domain $0 \le x \le 2\pi$: **a** $\sin x = \frac{1}{2}$ **b** $\cos x = -\frac{1}{2}$ **c** $\tan x = -1$ **d** $\sin x = 1$

$$\mathbf{a} \quad \sin x = \frac{1}{2}$$

$$\mathbf{b} \quad \cos x = -\frac{1}{2}$$

c
$$\tan x = -1$$

$$d \sin x = 1$$

e
$$2\cos x = \sqrt{3}$$

$$\mathbf{g} \quad \cos x + 1 = 0$$

e
$$2\cos x = \sqrt{3}$$
 f $\sqrt{3}\tan x = 1$ **g** $\cos x + 1 = 0$ **h** $\sqrt{2}\sin x + 1 = 0$

- 4 Solve each equation for $0 \le \theta \le 2\pi$. Remember that a positive number has two square roots.
 - $a \sin^2 \theta = 1$
- $\mathbf{b} \quad \tan^2 \theta = 1$
- $\mathbf{c} \quad \cos^2 \theta = \frac{1}{4}$
- $\mathbf{d} \cos^2 \theta = \frac{3}{4}$

- **5** Consider the equation $\cos^2 \theta \cos \theta = 0$, for $0 \le \theta \le 2\pi$.
 - a Write the equation as a quadratic equation in u by letting $u = \cos \theta$.
 - **b** Solve the quadratic equation for u.
 - **c** Hence find the values of θ that satisfy the original equation.

- **6** Consider the equation $\tan^2 \theta \tan \theta 2 = 0$, for $0 \le \theta \le 2\pi$.
 - **a** Write the equation as a quadratic equation in u by letting $u = \tan \theta$.
 - **b** Solve the quadratic equation for u.
 - **c** Hence find the values of θ that satisfy the original equation. Give the solutions correct to two decimal places where necessary.

7 Solve these equations for $0 \le \theta \le 2\pi$, by transforming each equation into a quadratic equation in u. Give your solutions correct to two decimal places where necessary.

$$a \tan^2 \theta + \tan \theta = 0$$

(Let
$$u = \tan \theta$$
.)

b
$$2\sin^2\theta - \sin\theta = 0$$
 (Let $u = \sin\theta$.)

(Let
$$u = \sin \theta$$
.)

$$\mathbf{g} \quad 3\sin^2\theta + 8\sin\theta - 3 = 0$$

h
$$3\cos^2\theta - 8\cos\theta - 3 = 0$$

- 9 Use the trigonometric identities from Chapter 5 to transform each equation so that it only involves one trigonometric function. Then solve it for $0 \le x \le 2\pi$. Give solutions correct to two decimal places where necessary.
 - $2\sin^2 x + \cos x = 2$

b $\sec^2 x - 2\tan x - 4 = 0$