1 Find *E*(*X*) for each of the following probability distributions.

(a)	x	1	3	5	7	9	(b)	x	-1	0	1	2	3
	P(X = x)	0.2	0.3	0.25	0.15	0.1		P(X = x)	0.4	0.15	0.2	0.05	0.2

- **2** Use the given value of E(X) to solve for the unknowns.
 - (a) Find the values of *a* and *b* in the following probability distribution, given that E(X) = 3.8.

x	2	3	4	5	6	
P(X = x)	0.4	0.1	а	0.1	b	

3 For the following probability distribution, find:

x	0	1	2	3	4
P(X = x)	0.25	0.3	0.2	0.15	0.1

(a) E(X) (b) E(2X-3)

6 For the following probability distribution, find:

у	-3	-2	-1	0	1	2
P(Y=y)	0.02	0.03	0.25	0.35	0.3	0.05

(a) the standard deviation of Y (b) $P(\mu - 2\sigma \le Y \le \mu + 2\sigma)$.

11 Eric just got a new job selling cars. He is offered a choice of two salary packages. In the first package he receives a weekly retainer of \$200 and an additional \$650 for every car sold. In the second package his retainer would be \$400, but he would only receive \$400 for every car sold. Past sales patterns indicate that the probability distribution for the number of cars sold per week is as follows:

Number of vehicles	0	1	2	3	4	5
Probability	0.45	0.35	0.1	0.05	0.04	0.01

Which salary package would Eric be better off taking?

13 A random variable, *T*, has the following probability distribution:

t	w – 3	w – 2	w-1	w	w + 1
P(T=t)	0.2	0.5	0.1	0.05	0.15

- (a) Given that E(T) = 8.45, find the value of w.
- (b) Find Var(*T*). (c) Find the standard deviation of *T* correct to 2 decimal places.

14 The probability distribution of *G* is given by:

$$P(G = g) = \begin{cases} k(6-g) & \text{if } g \in \{0,1,2,3,4\} \\ 0 & \text{for all other values of } g \end{cases}$$

Find the following values: (a) k (b) E(G) (c) Var(G) (d) σ

- 16 Enrico runs a game of chance at the Sydney Show. The player pays a fee to play, and draws a card at random from a normal pack of 52 playing cards. If the card is black, the player gets \$1 and their fee is refunded. If the card is a diamond, the player gets \$5 and their fee is refunded.
 - (a) Find Enrico's loss for the following conditions:
 - (i) the card the player chooses is black
 - (ii) the card the player chooses is a diamond.
 - (b) Describe the event for which Enrico keeps the game fee.
 - (c) Let Enrico's profit for the event described in part (b) be \$*p*, and draw up a probability distribution table that shows the three possible outcomes from Enrico's point of view.
 - (d) Find the value of p so that the expected value for the distribution is 0.
 - (e) If Enrico wants to make a profit, what is the minimum whole dollar amount he should charge to play the game?

- 18 A spinner has nine equal sections, of which five are yellow, three are blue and one is red. If the spinner lands on yellow, you receive \$1. If it lands on blue you receive \$3 and if it lands on red you receive \$5. Let X stand for the amount of money you receive.
 - (a) Draw up a probability distribution table for this game.
 - (b) What is the expected value of X?
 - (c) If the game is to be fair, how much should you pay to play?

- **19** The game of 'Take a Chance' requires the player to roll three dice, of which one is blue, one is red and one is white. If a 1 shows on the blue die the player receives \$1, if a 1 shows on the red die the player receives \$2 and if a 1 shows on the white die the player receives \$5. In all other circumstances the player receives nothing. A player can receive more than one prize.
 - (a) Find the probability that the player receives the following amounts:
 (i) \$1
 (ii) \$2
 (iii) \$3
 (iv) \$5
 (v) \$6
 (vi) \$7
 (vii) \$8
 (viii) \$0
 - (b) What is the expected return on this game?
 - (c) How much should the operator charge to play if the game is fair?