The **auxiliary angle** method of solving trigonometric equations involves changing an equation of the form $a \sin x \pm b \cos x = c$ into the form $r \sin (x \pm \alpha) = c$, which is then easier to solve. In this form, α is called the auxiliary angle.

This method can also be used to change $a \cos x \pm b \sin x = c$ into the form $r \cos (x \mp \alpha) = c$. In both cases, the constants *a*, *b*, *r* and α are positive real numbers.

For example, to express $a \sin x + b \cos x$ in the form $r \sin (x + \alpha)$:

Let $a \sin x + b \cos x = r \sin (x + \alpha)$ = $r (\sin x \cos \alpha + \cos x \sin \alpha)$ = $r \sin x \cos \alpha + r \cos x \sin \alpha$

This is an identity, so the coefficients of $\sin x$ and $\cos x$ on each side must be the same.

i.e.
$$a = r \cos \alpha$$

 $b = r \sin \alpha$
 $\therefore a^2 + b^2 = r^2 (\cos^2 \alpha + \sin^2 \alpha)$

Hence: $r^2 = a^2 + b^2$

 $r = \sqrt{a^2 + b^2}$ because *r* is a positive real number.

From the coefficients, there is also $\cos \alpha = \frac{a}{r}$ and $\sin \alpha = \frac{b}{r}$.

As *a* and *b* are positive constants, so $\cos \alpha$ and $\sin \alpha$ are also positive. This also means that α is in the first quadrant (i.e. it is an acute angle), such that $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{b}{a}$.

Hence, the auxiliary angle method gives:	$a\sin x + b\cos x = r\sin\left(x + \alpha\right)$
which then allows you to obtain:	$a\sin x - b\cos x = r\sin\left(x - \alpha\right)$
	$a\cos x + b\sin x = r\cos(x-\alpha)$
	$a\cos x - b\sin x = r\cos\left(x + \alpha\right)$

In each case, $r = \sqrt{a^2 + b^2}$ and α is an angle in the first quadrant such that $\tan \alpha = \frac{b}{a}$.

Example 1a: Express $\sqrt{3} \sin x - \cos x$ in the form $r \sin(x - \alpha)$

Solution

 $\sqrt{3} \sin x - \cos x = r \sin(x - \alpha)$ $= r (\sin x \cos \alpha - \cos x \sin \alpha)$ $= r \sin x \cos \alpha - r \cos x \sin \alpha$ Equate coefficients of sin x and cos x: $r \cos \alpha = \sqrt{3}$ [1] $r \sin \alpha = 1$ [2] $[1]^2 + [2]^2$: $r^2 (\cos^2 \alpha + \sin^2 \alpha) = 4$ $r^2 = 4$ r = 2 (as r > 0) Hence from [1] and [2]: $\cos \alpha = \frac{\sqrt{3}}{2}$ and $\sin \alpha = \frac{1}{2}$ As $\cos \alpha$ and $\sin \alpha$ are both positive, α is in the first quadrant, such that $\tan \alpha = \frac{1}{\sqrt{3}}$, i.e. $\alpha = \frac{\pi}{6}$ From the first equation: $\sqrt{3} \sin x - \cos x = 2 \sin \left(x - \frac{\pi}{6}\right)$ **Example 1b:** Express $3\cos x - 4\sin x$ in the form $r\cos(x + \alpha)$

Solution $3\cos x - 4\sin x = r\cos(x + \alpha)$ $a = 3, b = 4: r = \sqrt{3^2 + 4^2} = 5$ $\tan \alpha = \frac{4}{3}: \alpha = 53^{\circ}8'$ $\therefore 3\cos x - 4\sin x = 5\cos(x + 53^{\circ}8')$

The two examples above illustrate two different auxiliary angle methods that may be used. You should practise both.

Important uses of the auxiliary angle method

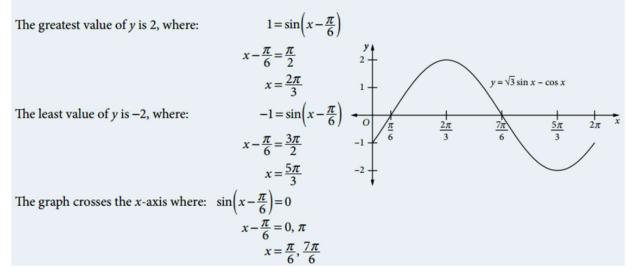
- Writing $a \sin x + b \cos x$ in the form $r \sin (x + \alpha)$ tells you that the greatest and least values of the function are r and -r respectively. This makes sketching functions like $y = a \sin x + b \cos x$ much easier.
- Writing $a \sin x + b \cos x$ in the form $r \sin (x + \alpha)$ allows you to solve equations of the type $a \sin x \pm b \cos x = c$.

Example 2

Sketch the graph of $y = \sqrt{3} \sin x - \cos x$, $0 \le x \le 2\pi$.

Solution

Example 1 (a) has already shown that $\sqrt{3}\sin x - \cos x = 2\sin\left(x - \frac{\pi}{6}\right)$. Hence: $y = 2\sin\left(x - \frac{\pi}{6}\right)$ At the endpoints of the domain, x = 0 and $x = 2\pi$: $y = 2\sin\left(-\frac{\pi}{6}\right) = 2\sin\left(2\pi - \frac{\pi}{6}\right) = -1$



Example 3

Solve the following equations.

(a)
$$\sqrt{3}\sin x - \cos x = 1, 0 \le x \le 2\pi$$

Solution

Method 1

(a) Example 1 (a) has already shown that $\sqrt{3} \sin x - \cos x = 2 \sin \left(x - \frac{\pi}{6} \right)$. $\therefore \quad 2 \sin \left(x - \frac{\pi}{6} \right) = 1$ $\sin \left(x - \frac{\pi}{6} \right) = \frac{1}{2}$ $x - \frac{\pi}{6} = \frac{\pi}{6}, \frac{5\pi}{6}$ $x = \frac{\pi}{3}, \pi$ (b) $8\cos x + 6\sin x = -3, 0^{\circ} \le x \le 360^{\circ}$

(b) Use $a \cos x + b \sin x = r \cos (x - a)$. $8 \cos x + 6 \sin x = -3$ a = 8, b = 6: $r = \sqrt{8^2 + 6^2} = 10$ $\tan \alpha = \frac{6}{8} = 0.75$ so $\alpha = 36^{\circ} 52'$ $\therefore 10 \cos (x - 36^{\circ} 52') = -3$ $\cos (x - 36^{\circ} 52') = -0.3$ $x - 36^{\circ} 52' = 107^{\circ} 27', 252^{\circ} 33'$ $x = 144^{\circ} 19', 289^{\circ} 25'$

Method 2

You can express sin x and cos x in terms of $\tan \frac{x}{2}$ for all values of x, except $x = \pm \pi, \pm 3\pi, \pm 5\pi, \dots$ (because $\tan \frac{\pi}{2}$ is undefined for those values).

The t formulae (see Chapter 4) give
$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t}{1+t^2}$.
(a) $\sqrt{3}\sin x - \cos x = 1, 0 \le x \le 2\pi$: $\frac{2\sqrt{3}t}{1+t^2} - \frac{1-t^2}{1+t^2} = 1$, where $t = \tan \frac{x}{2}$
 $2\sqrt{3}t - (1-t^2) = 1+t^2$
 $2\sqrt{3}t - 1+t^2 = 1+t^2$
 $\sqrt{3}t = 1$
 $t = \frac{1}{\sqrt{3}}$
 $\therefore \qquad \frac{x}{2} = \frac{\pi}{6} \text{ for } 0 \le \frac{x}{2} \le \pi$
 $x = \frac{\pi}{2} \text{ for } 0 \le x \le 2\pi$

Because $t = \tan \frac{x}{2}$ is undefined at $x = \pi$, you must now separately test whether $x = \pi$ is a solution. $x = \pi$: LHS = $\sqrt{3} \sin \pi - \cos \pi = 0 - (-1) = 1 =$ RHS Hence $x = \pi$ is also a solution. The complete solution is $x = \frac{\pi}{3}$, π .

(b)
$$8\cos x + 6\sin x = -3, 0^{\circ} \le x \le 360^{\circ}$$
: $\frac{8(1-t^2)}{1+t^2} + \frac{12t}{1+t^2} = -3$
 $8 - 8t^2 + 12t = -3 - 3t^2$
 $5t^2 - 12t - 11 = 0$
 $t = \frac{12 \pm \sqrt{144 + 220}}{10}$
 $\tan \frac{x}{2} = 3.108, -0.708$ (to 3 d.p.)
 $\frac{x}{2} = 72^{\circ}10', 144^{\circ}42'$ for $0^{\circ} \le \frac{x}{2} \le 180^{\circ}$
 $x = 144^{\circ}20', 289^{\circ}24'$ for $0^{\circ} \le x \le 360^{\circ}$

(Note the slight difference in the answers due to the rounding error when solving the quadratic equation.) Because $t = \tan \frac{x}{2}$ is undefined at $x = \pi$, you must now separately test whether $x = 180^{\circ}$ is a solution. $x = 180^{\circ}$: LHS = $8 \cos \pi + 6 \sin \pi = -8 + 0 = -8 \neq$ RHS Hence $x = 180^{\circ}$ is not a solution of the equation.

Important note:

If you use the *t* formulae substitution to solve equations of the type $a \cos x + b \sin x = c$, you must also test to see whether $x = \pm n\pi$ is a solution of the equation. The use of the *t* formulae to solve a variety of equations will be covered later in this chapter.