1	The displacement x m of a particle moving in a straight line is given by $x = 6\cos 4t$. Describe the motion of the particle.

2 The equation of motion of a particle moving with simple harmonic motion is $\ddot{x} = -9x$. Find its period, amplitude and greatest speed if: (a) x = 0, $\dot{x} = 2$ when t = 0 (b) x = 2, $\dot{x} = 2$ when t = 0.

3 A particle is moving in a straight line. If x metres is its displacement at time t seconds and $\left(\frac{dx}{dt}\right)^2 = 5(4-x^2)$, find the acceleration in terms of x only. Show that the motion is simple harmonic and find its period and amplitude.

8 A particle is moving along the *x*-axis in simple harmonic motion centred at the origin. When *x* = 2, the velocity of the particle is 5.

When x = 5, the velocity of the particle is 4. Find:

(a) the amplitude of the motion

(b) the period of the motion.

- **9** A particle moves in a straight line. At time t seconds, its displacement x cm from a fixed point O in the line is given by $x = 5 \cos\left(\frac{\pi}{2}t \frac{\pi}{3}\right)$. Express the acceleration in terms of x only and hence show that the motion is simple harmonic. Find:
 - (a) the period (b) the amplitude (c) the speed when x = -2.5 (d) the acceleration when x = -2.5.

14 Solve the differential equation $\frac{d^2x}{dt^2} + 16x = 0$ subject to the conditions x = 3 and $\frac{dx}{dt} = 16$ when t = 0. Find the maximum displacement and the maximum speed if x metres is the displacement of the particle moving in a straight line at time t seconds.

22	A floating buoy oscillates up and down with the waves, rising and falling 2 metres about its mean position. Find its greatest velocity and acceleration if the period of the motion is 3 seconds.

29	A point moves with SHM in such a way that its speed is 8 and $6\mathrm{ms}^{-1}$ respectively at distances 3 and $4\mathrm{m}$ from the mean position. Calculate the period of the motion and the magnitude of the greatest acceleration.

- 37 A particle is moving in a straight line under simple harmonic motion. It has a displacement of x metres from a point O, on the line, at time t seconds given by $x = 1 + 2\cos\left(2t \frac{\pi}{4}\right)$.
 - (a) Show that $\ddot{x} = -4(x-1)$.
 - (b) Find the centre of the motion and the time taken for the particle to first reach maximum speed.
 - (c) Find the amplitude of the motion and when the particle is first at rest.

- **38** The tide can be modelled using simple harmonic motion. At a particular location, the depth at high tide is 5 metres and the depth at low tide is 1 metre. At this location, the tide completes two full periods every 25 hours. Let *x* represent the depth in metres and *t* be the time in hours after the first low tide of the day.
 - (a) If this depth of this tide can be modelled by the function $x = a \cos nt + c$, find the values of a, n and c. The first low tide today is at 2 a.m.
 - (b) At what time is the first high tide today?
 - (c) At what time this evening is the depth of water increasing at the fastest rate?