- 1 If z = 2 + i and w = -3 4i, represent each of the following on the complex plane.
 - (a) z
- (b) \overline{z}
- (c) $z\overline{z}$
- (d) 3z
- (e) -2z
- (g) z+w

- (h) −w
- (i)
- z^2
- (k) Re(z)
- (I) Im(z)

- 2 If $z = 2\left(\cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3}\right)$, then $z^4 = ...$
 - A $16\left(\cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3}\right)$ B $16\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$
 - C $16\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ D $16\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$

- 3 If $z = \overline{z}$, then $\arg z = \dots$

- **B** $\frac{\pi}{2}$ **C** 0 **D** 0 or π

- 4 Express each of the following in mod-arg form. (Give the argument in radians and in exact form.)
 - (a) 2-2i
- **(b)** $-\sqrt{3} + i$
- (c) -6-6i
- (d) 4i
- **(e)** −4

(f)
$$-3 - \sqrt{3}i$$

(f)
$$-3 - \sqrt{3}i$$
 (g) $2\sqrt{3} - 2i$ (h) $\sqrt{2} + \sqrt{2}i$

(h)
$$\sqrt{2} + \sqrt{2}$$

6 For each of the following, find both zw and $\frac{z}{w}$ in mod-arg form.

(a)
$$z = 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), w = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
 (b) $z = 5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), w = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

(b)
$$z = 5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), w = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

7 If z = x + iy, prove the following.

(a)
$$|z| = |\overline{z}|$$

$$(b) z\overline{z} = |z|^2$$

(c)
$$z + \frac{|z|^2}{z} = 2 \operatorname{Re}(z)$$

11 If $z = r(\cos \theta + i \sin \theta)$, show that $\frac{z}{z^2 + r^2}$ is real.

GEOMETRICAL REPRESENTATION OF A COMPLEX NUMBER14 Use de Moivre's theorem to prove that the conjugate of a power is equal to the power of the conjugate, i.e. let $z = r(\cos \theta + i \sin \theta)$ and prove that $\overline{z}^n = (\overline{z})^n$.

- 15 We have already proved (earlier and in question 14) that:
 - $z + \overline{z} = 2 \operatorname{Re}(z)$ and $z \overline{z} = 2 \operatorname{Im}(z) \times i$
 - the conjugate of a sum is equal to the sum of the conjugates
 - the conjugate of a difference is equal to the difference of the conjugates
 - the conjugate of a product is equal to the product of the conjugates
 - the conjugate of a quotient is equal to the quotient of the conjugates
 - the conjugate of a power is equal to the power of the conjugate.
 - It is also obvious that the conjugate of a real number is itself, i.e. if z = x + 0i then $\overline{z} = x 0i = z$.

Use these properties of conjugates to answer the following.

- (a) Show that $z^n + (\overline{z})^n = 2 \operatorname{Re}(z^n)$.
- **(b)** Simplify $(1 + \sqrt{3}i)^{10} + (1 \sqrt{3}i)^{10}$.

16 Consider the cubic polynomial $P(x) = ax^3 + bx^2 + cx + d$ for which all the coefficients a , b , c and d are real. Let the complex number z be a root of the equation $P(x) = 0$. Show that \overline{z} is also a root of $P(x) = 0$.