You have seen that the area of a region bounded by a line y = r, the x-axis and the ordinates x = 0 and x = h can be found by adding up the areas of all the rectangles of width δx and height r between x = 0 and x = h, as δx becomes vanishingly

small:
$$A = \lim_{\delta x \to 0} \sum_{n=0}^{k} f(x) \delta x$$
.

This area is given by the definite integral $A = \int_0^h r \, dx$, which is $A = \int_0^h r \, dx = [rx]_0^h = rh$. You should recognise this as the area of a rectangle of sides r and h.

Consider what happens when the area bounded by y = r, the x-axis and the ordinates x = 0 and x = h is rotated about the x-axis to form a solid of revolution, as shown in the diagram below to the left. The solid of revolution formed is a cylinder of radius r and height h.

The rectangles of side r and width δx have become circular disks of radius r and thickness δx . The volume of this disk is given by $\Delta V = \pi (f(x))^2 \delta x$. Adding all the disks as

 δx gets smaller gives $V = \lim_{\delta x \to 0} \sum_{n=0}^{\infty} \pi (f(x))^{2} \delta x$, which is given by the definite integral $V = \pi \int_{0}^{\infty} r^{2} dx$.

Thus the volume is $V = \pi \int_0^h r^2 dx = \pi \left[r^2 x \right]_0^h = \pi r^2 h$, which you should recognise as the volume of a cylinder of radius r and height h.

When the arc *CD* of the curve y = f(x) on the interval $a \le x \le b$ is rotated about the *x*-axis, the volume of the solid of revolution formed is given by:

$$V = \pi \int_a^b (f(x))^2 dx \qquad \text{or} \qquad V = \pi \int_a^b y^2 dx$$

Example 1

Calculate the volume of the solid formed when the portion of the line y = 2x between x = 0 and x = 3 is rotated about the x-axis. What is the name of the kind of solid formed?

Solution

Draw a diagram:

$$y = 2x$$

Volume =
$$\pi \int_a^b y^2 dx$$

= $\pi \int_0^3 (2x)^2 dx$
= $4\pi \int_0^3 x^2 dx$
= $4\pi \left[\frac{x^3}{3}\right]_0^3$
= $4\pi (9-0)$
= 36π units³

The solid is a right circular cone of base radius 6 and height 3.

Example 2

Find the volume of a right circular cone of height h and base radius r.

Solution

The cone can be considered as a solid of revolution generated by rotating the right-angled triangle *OAB* about the *x*-axis.

The equation of *OA* is $y = \frac{rx}{h}$.

$$V = \pi \int_{a}^{b} y^{2} dx$$

$$V = \pi \int_{0}^{h} \frac{r^{2} x^{2}}{h^{2}} dx = \frac{\pi r^{2}}{h^{2}} \int_{0}^{h} x^{2} dx$$

$$= \frac{\pi r^{2}}{h^{2}} \left[\frac{x^{3}}{3} \right]_{0}^{h}$$

$$= \frac{\pi r^{2}}{h^{2}} \times \frac{h^{3}}{3}$$

$$= \frac{1}{3} \pi r^{2} h$$

Example 3

Find the volume of a sphere of radius r.

Solution

The volume of a sphere can be considered as the volume generated by rotating the semicircle defined by $y = \sqrt{r^2 - x^2}$, $-r \le x \le r$, about the *x*-axis.

Hence:

$$V = \pi \int_{-r}^{r} y^{2} dx \qquad \text{where } y = \sqrt{r^{2} - x^{2}}$$

$$= \pi \int_{-r}^{r} (r^{2} - x^{2}) dx \qquad \text{because } y^{2} = r^{2} - x^{2}$$

$$= \pi \left[r^{2}x - \frac{x^{3}}{3} \right]_{-r}^{r}$$

$$= \pi \left(\left(r^{3} - \frac{r^{3}}{3} \right) - \left(-r^{3} + \frac{r^{3}}{3} \right) \right)$$

$$= \frac{4}{\pi} \pi r^{3}$$

Example 4

The part of the parabola $y = x^2$ between x = 1 and x = 3 is rotated about the *y*-axis. Calculate the volume generated.

Solution

$$y = x^2$$
: $x = 1, y = 1; x = 3, y = 9$ $V = \pi \int_1^9 x^2 dy$ where $x^2 = y$

$$V = \pi \int_1^9 y dy$$

$$= \pi \left[\frac{y^2}{2} \right]_1^9$$

$$= \pi \left(\frac{81}{2} - \frac{1}{2} \right)$$

$$= 40\pi \text{ units}^3$$

Example 3, above, proves the formula for the volume of the sphere—a formula that you have used for many years. The formula for the area of a circle $A = \pi r^2$ can similarly be proved using calculus.

Rotating around the y-axis

When the arc CD of the curve x = g(y) on the interval $c \le y \le d$ is rotated about the y-axis, the volume of the solid of revolution formed is given by:

$$V = \pi \int_{c}^{d} (g(y))^{2} dy$$
 or $V = \pi \int_{c}^{d} x^{2} dy$

$$V = \pi \int_{c}^{d} x^{2} \, dy$$

Example 5

Find the volume of the solid formed when the area bounded by the parabola $y = 4 - x^2$ and the x-axis is rotated about: (a) the x-axis (b) the y-axis.

Solution

(a) Rotate about x-axis:

(b) Rotate about y-axis:

$$V = \pi \int_{-2}^{2} y^{2} dx \qquad \text{where } y = 4 - x^{2}$$

$$= \pi \int_{-2}^{2} (16 - 8x^{2} + x^{4}) dx$$

$$= \pi \left[16x - \frac{8x^{3}}{3} + \frac{x^{5}}{5} \right]_{-2}^{2}$$

$$= \pi \left(\left(32 - \frac{64}{3} + \frac{32}{5} \right) - \left(-32 + \frac{64}{3} - \frac{32}{5} \right) \right)$$

$$= \frac{512\pi}{15} \text{ units}^{3}$$

$$V = \pi \int_0^4 x^2 dx \quad \text{where } x^2 = 4 - y$$

$$= \pi \int_0^4 (4 - y) dx$$

$$= \pi \left[4y - \frac{y^2}{2} \right]_0^4$$

$$= \pi \left((16 - 8) - 0 \right)$$

$$= 8\pi \text{ units}^3$$

Example 6

Calculate:

- (a) the area bounded by the curve $y = e^{1.5x}$, the coordinate axes and the line x = 2
- (b) the volume obtained by rotating this area about the x-axis.

Solution

(a)
$$y = e^{1.5x}, y = 0, x = 2$$

Area $= \int_0^2 e^{1.5x} dx$
 $= \left[\frac{2}{3}e^{1.5x}\right]_0^2$

$$=\frac{2}{3}\left(e^3-e^0\right)$$

$$=\frac{2(e^3-1)}{3}\approx 12.72 \text{ units}^2$$

(b) Volume =
$$\pi \int_{0}^{2} y^{2} dx$$
 where $y = e^{1.5x}$.

$$= \pi \int_0^2 e^{3x} dx$$
$$= \frac{\pi}{3} \left[e^{3x} \right]_0^2$$
$$= \frac{\pi}{3} \left(e^6 - e^0 \right)$$
$$= \frac{\pi \left(e^6 - 1 \right)}{3}$$

Example 8

Find the volume generated by rotating about the x-axis the area beneath the curve $y = \frac{1}{\sqrt{x}}$ between x = 4and x = 9.

Solution

Volume =
$$\pi \int_4^9 y^2 dx$$
 where $y = \frac{1}{\sqrt{x}}$
= $\pi \int_4^9 \frac{1}{x} dx$
= $\pi \left[\log_e x \right]_4^9$
= $\pi \left(\log_e 9 - \log_e 4 \right)$

 $= \pi \log_e 2.25$ ≈ 2.548

Example 7

Find: (a) the area bounded by the curve $y = \log_a x$, the x-axis and the ordinate x = 2

(b) the volume of the solid of revolution formed by rotating the area bounded by the curve $y = \log_e x$, the coordinate axes and the line $y = \log_e 2$ about the y-axis.

Solution

(a) Area =
$$\int_{1}^{2} \log_{e} x \, dx$$

Instead of trying to evaluate this integral directly, draw a diagram.

This problem requires the area of the shaded region *BCE*. It can be obtained by finding the area of the rectangle *ABCD* and subtracting the area *ABED*.

Because $y = \log_e x$, you can write $x = e^y$.

At
$$x = 2$$
, $y = \log_e 2$: Area $ABED = \int_0^{\log_e 2} e^y dy$

$$= \left[e^y \right]_0^{\log_e 2}$$

$$= e^{\log_e 2} - e^0$$

$$= 2 - 1$$

Area
$$ABCD = 2 \log_e 2$$

 \therefore Area $BCE = 2 \log_e 2 - 1$
 $\approx 0.386 \text{ units}^2$

(b) Volume =
$$\pi \int_0^{\log_e 2} x^2 dy$$
 where $x = e^y$
= $\pi \int_0^{\log_e 2} e^{2y} dy$
= $\frac{\pi}{2} \Big[e^{2y} \Big]_0^{\log_e 2}$
= $\frac{\pi}{2} \Big(e^{2\log_e 2} - e^0 \Big)$
= $\frac{\pi}{2} (4 - 1) = \frac{3\pi}{2}$ units³

Volume by rotating the region between two curves

When the region bounded by two curves y = f(x) and y = g(x) is rotated about the *x*-axis, the volume of the solid of revolution formed is given by $V = \pi \int_a^b \left(\left[f(x) \right]^2 - \left[g(x) \right]^2 \right) dx$, where *a* and *b* are the abscissae of the points of intersection of the two curves, a < b and $f(x) \ge g(x)$.

If the region is rotated about the *y*-axis, the equation of each curve must first be written as a function of *y*, i.e. x = f - 1(y) and x = g - 1(y), and the ordinates of the points of intersection used, namely *c* and *d*, as shown in the diagram.

The volume of the solid of revolution is given by $V = \pi \int_{c}^{d} \left(\left[f^{-1}(y) \right]^{2} - \left[g^{-1}(y) \right]^{2} \right) dy$.

Example 9

The curve $y = x^3 - 3x^2 + 3x$ and the line y = x intersect at (0, 0), A and B.

- (a) Find the coordinates of A and B.
- (b) Calculate the shaded area between the curves.
- (c) The shaded region between the curves from O to A is rotated about the x-axis. Calculate the exact volume of the solid formed.

Solution

(a)
$$x^3 - 3x^2 + 3x = x$$

 $x^3 - 3x^2 + 2x = 0$
 $x(x^2 - 3x + 2) = 0$
 $x(x - 1)(x - 2) = 0$
 $x = 0, 1, 2$
 $y = 0, 1, 2$
 $A(1, 1)$ and $B(2, 2)$

(b) Area =
$$\int_0^1 (x^3 - 3x^2 + 3x - x) dx + \int_1^2 (x - (x^3 - 3x^2 + 3x)) dx$$

= $\int_0^1 (x^3 - 3x^2 + 2x) dx + \int_1^2 (-x^3 + 3x^2 - 2x) dx$
= $\left[\frac{x^4}{4} - x^3 + x^2 \right]_0^1 + \left[-\frac{x^4}{4} + x^3 - x^2 \right]_1^2$
= $\frac{1}{4} - 1 + 1 - 0 + \left(-4 + 8 - 4 - \left(-\frac{1}{4} + 1 - 1 \right) \right)$
= $\frac{1}{2}$ unit²

(c) Volume from O to
$$A = \pi \int_0^1 \left\{ \left(x^3 - 3x^2 + 3x \right)^2 - x^2 \right\} dx$$

$$= \pi \int_0^1 \left(x^6 - 6x^5 + 15x^4 - 18x^3 + 8x^2 \right) dx$$

$$= \pi \left[\frac{x^7}{7} - x^6 + 3x^5 - \frac{9x^4}{2} + \frac{8x^3}{3} \right]_0^1$$

$$= \pi \left(\frac{1}{7} - 1 + 3 - \frac{9}{2} + \frac{8}{3} - 0 \right)$$

$$= \frac{13\pi}{42} \text{ units}^3$$

(d) Volume from A to
$$B = \pi \int_{1}^{2} \left\{ x^{2} - \left(x^{3} - 3x^{2} + 3x \right)^{2} \right\} dx$$

$$= -\pi \int_{1}^{2} \left(x^{6} - 6x^{5} + 15x^{4} - 18x^{3} + 8x^{2} \right) dx$$

$$= -\pi \left[\frac{x^{7}}{7} - x^{6} + 3x^{5} - \frac{9x^{4}}{2} + \frac{8x^{3}}{3} \right]_{1}^{2}$$

$$= -\pi \left(\frac{128}{7} - 64 + 96 - 72 + \frac{64}{3} - \left[\frac{1}{7} - 1 + 3 - \frac{9}{2} + \frac{8}{3} \right] \right)$$

$$= \frac{29\pi}{42} \text{ units}^{3}$$

(e) Volume from *O* to
$$B = \frac{13\pi}{42} + \frac{29\pi}{42} = \pi \text{ units}^3$$