Finding the primitive of a function

The process of finding the function from the derivative is called **anti-differentiation** or **finding the primitive** of the function.

Examples:

the derivative of x^2 is 2x, therefore a primitive (or anti-derivative) of 2x is x^2

the derivative of $2x^4$ is $8x^3$, therefore a primitive (or anti-derivative) of $8x^3$ is $2x^4$

the derivative of *sin x* is *cos x*, therefore a primitive (or anti-derivative) of *cos x* is *sin x*

NOTE that the derivative of $x^2 + C$ (where *C* is a constant) is also 2x, therefore there is not one primitive for 2x, but a family of primitives which differ from each other by a constant, i.e. $x^2 + C$

So for example, the derivative of e^{2x} is $2e^{2x}$, therefore all possible primitives (or antiderivatives) of $2e^{2x}$ are represented by $e^{2x} + C$ (where *C* is a constant).

Notation 1: normally, capital letters are used to show primitive functions, i.e. the primitive of the function f(x) is generally noted F(x). Therefore F'(x) = f(x). Similarly, f(x) is the primitive of f'(x)

Notation 2: the notation $\int f(x) dx$ is also commonly used to represent the primitive of f(x). So $\int f(x) dx = F(x)$

Examples:

$$\int 2x \, dx = x^2 + C \qquad \qquad \int \cos x \, dx = \sin x + C \qquad \qquad \int \sec^2 x \, dx = \tan x + C$$

This notation is called "**the indefinite integral**". The indefinite integral gives a function to represent all possible values of the primitive by adding *C*, **the constant of integration**.

The term dx is used to show the variable of integration; this is necessary as some functions depend on several variables, for example: f(x, y, z) = 2x + 3y - 4z, so we need to show clearly the variable of integration, as $\int f(x, y, z) dx$ would be different from $\int f(x, y, z) dy$

Primitive of polynomial functions

The derivative of the function $\frac{x^{n+1}}{n+1}$ is $\frac{1}{n+1}(n+1)x^{n+1-1} = x^n$ therefore:

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

This is also valid for positive or negative, rational or not, values of *n* different of (-1) (the case n = -1 will be studied later).

Example:
$$\int \frac{1}{x^3} dx = \int x^{-3} dx = \left(\frac{x^{-3+1}}{-3+1}\right) + C = \frac{x^{-2}}{(-2)} + C = -\frac{1}{2x^2} + C$$

Example 1

Find the equation of the curve defined by f'(x) = 2x that passes through the point (2,8).

Solution

f'(x) = 2x, find the primitive:	$f(x) = x^2 + C$
Passes through (2,8):	$8 = 2^2 + C$
	C = 4

Hence $f(x) = x^2 + 4$ is the equation of the curve.

Example 2

Find the primitive of each expression.

(a) $5x^4 + 3x^2 + 4$	(b) $16 - 8x + x^3$	(c) $x^{10} + 4$
Solution		
(a) $f'(x) = 5x^4 + 3x^2 + 4$:	(b) $f'(x) = 16 - 8x + x^3$:	(c) $f'(x) = x^{10} + 4$:
$f(x) = x^5 + x^3 + 4x + C$	$f(x) = 16x - \frac{8x^2}{2} + \frac{x^4}{4} + C$	$f(x) = \frac{x^{11}}{11} + 4x + C$
	$f(x) = 16x - 4x^2 + \frac{x^4}{4} + C$	

Example 3

The gradient function of a curve is $3x^2 - 2x$ and the curve passes through the point (2, 1). Find the equation of the curve.

Solution

 $\frac{dy}{dx} = 3x^2 - 2x, \text{ find the primitive:} \qquad y = \frac{3x^3}{3} - \frac{2x^2}{2} + C$ Simplify: $y = x^3 - x^2 + C$ At point x = 2, y = 1: 1 = 8 - 4 + C C = -3

The equation of the curve is $y = x^3 - x^2 - 3$.

Primitives and the graph of a function

As mentioned before, $\int 2x \, dx = x^2 + C$, therefore the primitive functions of f(x) = 2x are all those functions such as $F(x) = x^2 + C$ i.e. all the primitives vary only by a constant.

Graphically, they are the same curve translated vertically by a fixed amount:

If the tangent at x = 1 is drawn for these curves, then the tangents form a system of parallel lines, because each curve has the same gradient function.

Example 4

Find f(x) given f'(x).

(a) $f'(x) = x + \frac{1}{x^2}$ (b) $f'(x) = x\sqrt{x} + 1$ (c) $f'(x) = \frac{x^3 + 2x^2 + 1}{x^2}$

Solution

(a)
$$f'(x) = x + \frac{1}{x^2}$$
, rewrite using index notation: $f'(x) = x + x^{-2}$
Find primitive: $f(x) = \frac{x^2}{2} + \frac{x^{-1}}{-1} + C$
 $f(x) = \frac{x^2}{2} - \frac{1}{x} + C$
(b) $f'(x) = x\sqrt{x} + 1$, rewrite using index notation: $f'(x) = x^{\frac{3}{2}} + 1$

Find primitive:
$$f(x) = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + x + C$$

 $f(x) = \frac{2}{5}x^{\frac{5}{2}} + x + C$

(c) If there is a single term in the denominator, divide the numerator by the denominator before finding the primitive.

$$f'(x) = \frac{x^3 + 2x^2 + 1}{x^2}; \qquad f'(x) = x + 2 + \frac{1}{x^2}$$

Rewrite using indices: $f'(x) = x + 2 + x^{-2}$
Find primitive: $f(x) = \frac{x^2}{2} + 2x + \frac{x^{-1}}{-1} + C$
 $f(x) = \frac{x^2}{2} + 2x - \frac{1}{x} + C$

Example 5

ŀ

A colony of bats has a growth rate $\frac{dN}{dt} = 80t$, where *t* is the number of years since 2018 and *N*(*t*) is the population. If there were 3000 bats in the year 2018, how many bats are in the colony in 2048?

Solution

 $t = 0, N = 3000, \frac{dN}{dt} = 80t$ Find the primitive: $N(t) = 40t^2 + C$ But N(0) = 3000: 3000 = C $N(t) = 40t^2 + 3000$ In 2048, t = 30: $N(30) = 40 \times 900 + 3000 = 39\,000$ There would be 39 000 bats in the colony in 2048.