INTRODUCTION TO FUNCTIONS

- 1 Let f(x) = 2x + 3. Calculate the following function values.
 - a f(1)

 \mathbf{b} f(0)

c f(-2)

d f(4)

- 6 Copy and complete the table of values for each function.
 - a y = 2x + 1

X	-1	0	1
y			

b $y = x^2 - 2x$

X	-1	0	1	2	3
у					

8 Given that $f(x) = x^2 - 3x + 5$, find the value of:

a
$$\frac{1}{2}(f(2) + f(3))$$

b
$$\frac{1}{4} \Big(f(-1) + 2f(0) + f(1) \Big)$$

- 11 A restaurant offers a special deal to groups by charging a cover fee of \$50, then \$20 per person. Write down C, the total cost of the meal in dollars, as a function of x, the number of people in the group.
- 12 In each case explain why the function value cannot be found.

a
$$F(0)$$
, where $F(x) = \sqrt{x-4}$.

b
$$H(3)$$
, where $H(x) = \sqrt{1 - x^2}$.

14 Find g(a), g(-a) and g(a + 1) for each function.

$$\mathbf{a} \quad g(x) = 2x - 4$$

a
$$g(x) = 2x - 4$$
 b $g(x) = 2 - x$ **c** $g(x) = x^2$

$$g(x) = x^2$$

$$\mathbf{d} \quad g(x) = \frac{1}{x - 1}$$

SET NOTATION & INTERVAL NOTATION

For the number line graphs below, describe the intervals in **set notation** and **interval notation**. The first one has been done for you.

1)

set notation: $x \ge 2$

interval notation: $x \in [2, +\infty)$

2)

DOMAIN AND RANGE

The **domain** of a function y = f(x) is the set of all x values for which f(x) is defined.

The **range** of a function y = f(x) is the set of all y values for which f(x) is defined.

Interval notation

- [a, b] means the interval is between a and b, including a and b
- (a, b) means the interval is between a and b, excluding a and b
- [a, b) means the interval is between a and b, including a but excluding b
- (a, b] means the interval is between a and b, excluding a but including b
- $(-\infty, \infty)$ means that the interval includes the set of all real numbers R

EXAMPLE 8

Find the domain and range of each function.

$$f(x) = x^2$$

b
$$y = \sqrt{x - 1}$$

Solution

You can find the domain and range from the equation or the graph.

For $f(x) = x^2$, you can substitute any value for x. The y values will be 0 or positive.

So the domain is all real values of x and the range is all $y \ge 0$.

We can write this using interval notation:

Domain: $(-\infty, \infty)$

Range: [0, ∞)

The function $y = \sqrt{x-1}$ is only defined if $x-1 \ge 0$ because we can only evaluate the square root of a positive number or 0.

For example, x = 0 gives $y = \sqrt{-1}$, which is undefined for real numbers.

So
$$x - 1 \ge 0$$

$$x \ge 1$$

Domain: [1, ∞)

The value of $\sqrt{x-1}$ is always positive or zero. So $y \ge 0$.

Range: [0, ∞)

Find the natural domain and range of each function.

$f(x) = x + 2$ $f(x) = \sqrt{x}$ $f(x) = x^2$	
$f(x) = x^2$	
$f(x) = 2 - x^2$	
$f(x) = \sqrt{x+2}$	
$f(x) = \sqrt{3 - x}$	
$f(x) = \frac{1}{x}$	
$g(x) = 5 - x^2$	
$h(x) = \frac{1}{x-2}$	
$f(x) = \sqrt{5+x}$	
$f(x) = \sqrt{16 - x^2}$	
$h(x) = \frac{1}{\sqrt{2x-3}}$	

DEFINITION OF A FUNCTION

A function is a relationship which associates **only one value of** y to a value of x.

- 1 State whether each set of ordered pairs represents a function.
 - (0, 2), (1, 3), (2, 4), (3, 5), (4, 6)
- **b** (1, 2), (2, 4), (3, 6), (4, 8), (5, 10)
- (2,5), (2,-5), (3,8), (4,-2), (5,1) **d** (3,10), (4,9), (5,8), (6,7), (7,6)
- 2 Which table of values represents a function?

A:	х	2	2	2	2	2
	y	3	4	5	6	7

- B:
- 3 State whether these mapping diagrams represent functions.

4 Use the vertical line test to determine whether each graph represents a function.

a

b

d

e

f

h

i

k

1

- 5 Explain the circumstances under which a straight line:
 - must be a function

b cannot be a function.

6 Determine whether each of the following equations represents a function.

a
$$y = 2x + 3$$

b
$$x = 4$$

b
$$x = 4$$
 c $y = -2$

$$\mathbf{d} \quad \mathbf{y} = x^2$$

e
$$y = 1 - x^2$$

$$x^2 + y^2 = 4$$

$$\mathbf{g} \quad y = \frac{1}{x}$$

e
$$y = 1 - x^2$$
 f $x^2 + y^2 = 4$ **g** $y = \frac{1}{x}$ **h** $y = \sqrt{9 - x^2}$

7 Find the permissible x- and y-values for each of the following.

a

b

C

d

f

3 a Say whether each relation sketched below passes the vertical line test, and whether it passes the horizontal line test.

iii

iv

vi

4 Classify each graph as one-to-one, many-to-one, one-to-many or many-to-many.

a

b

C

d

e

f

