1 If z = x + iy, the Cartesian equation x - y = 0 represents:

$$A \qquad \arg z = \frac{\pi}{4}$$

B
$$|z+2i| = |z+2i|$$

A
$$\arg z = \frac{\pi}{4}$$
 B $|z+2i| = |z+2|$ **C** $\arg z = -\frac{3\pi}{4}$ **D** $|z+2i| = |z-2|$

D
$$|z+2i| = |z-2i|$$

3 On Argand diagrams, show the curves or regions described by the following.

(a)
$$|z| = 4$$

(b)
$$|z| \le 2$$

(c)
$$1 \le |z| \le 1$$

(b)
$$|z| \le 2$$
 (c) $1 \le |z| \le 3$ (d) $|z - (1 + \sqrt{3}i)| = 2$ (e) $|z - 2 + 2i| = 3$

(e)
$$|z-2+2i|=3$$

4 On Argand diagrams, show the curves or regions described by the following.

(a)
$$\arg z = \frac{\pi}{3}$$

(b)
$$\arg z = \frac{2\pi}{3}$$

(c)
$$-\frac{\pi}{3} \le \arg z \le \frac{2\pi}{3}$$

5 Show the following on the complex plane.

(a)
$$Re(z) = 2$$

(b)
$$Im(z) = -1$$

(c)
$$Re(z) + Im(z) = 1$$
 (d) $Re(z) < Im(z)$ (e) $z + \overline{z} = 6$

(d)
$$\operatorname{Re}(z) < \operatorname{Im}(z)$$

(e)
$$z + \overline{z} = 6$$

$$(f) z - \overline{z} = 4i$$

(g)
$$2|z| = z + \overline{z} + 4$$

(h)
$$|z^2 - (\overline{z})^2| \ge 16$$

(f)
$$z - \overline{z} = 4i$$
 (g) $2|z| = z + \overline{z} + 4$ (h) $|z^2 - (\overline{z})^2| \ge 16$ (i) $|z + 2 - 4i| = 2|z - 4 - i|$

- 6 On Argand diagrams, show:
 - (a) the region where $|z-1| \le 1$ and $\text{Im}(z) \ge 0$ are both true
 - **(b)** the intersection of $2 \le |z| \le 3$ and $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{4}$
 - (c) the intersection of $-\frac{\pi}{3} \le \arg z \le \frac{\pi}{3}$ and $\operatorname{Re}(z) < 2$
 - (d) the intersection of $|z| \le 3$ and $\text{Re}(z) + \text{Im}(z) \le 3$
 - (e) the region common to $z\overline{z} \le 4$ and $z + \overline{z} \le 2$.